kremen1依赖性肠病毒完全保守的VP2残基K140对病毒-受体相互作用和病毒感染至关重要。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY mBio Pub Date : 2025-02-05 Epub Date: 2025-01-16 DOI:10.1128/mbio.03040-24
Zeyu Liu, Xue Li, Xiaohong Li, Xingyu Yan, Yuan Tian, Yue Zhao, Kexin Liu, Pei Hao, Shuye Zhang, Chao Zhang
{"title":"kremen1依赖性肠病毒完全保守的VP2残基K140对病毒-受体相互作用和病毒感染至关重要。","authors":"Zeyu Liu, Xue Li, Xiaohong Li, Xingyu Yan, Yuan Tian, Yue Zhao, Kexin Liu, Pei Hao, Shuye Zhang, Chao Zhang","doi":"10.1128/mbio.03040-24","DOIUrl":null,"url":null,"abstract":"<p><p>The KREMEN1 (KRM1) protein is a cellular receptor for multiple enteroviruses that cause hand, foot, and mouth disease (HFMD), including coxsackievirus CVA2, CVA3, CVA4, CVA5, CVA6, CVA10, and CVA12. The molecular basis for the broad recognition of these viruses by the KRM1 receptor remains unclear. Here, we report the indispensable role of the completely conserved VP2 capsid protein residue K140 (designated K2140) in mediating receptor recognition and infection by CVA10 and other KRM1-dependent enteroviruses. Residue K2140 not only facilitates receptor recognition, cell attachment, and infection of CVA10 but also contributes to CVA10 pathogenicity <i>in vivo</i>. Notably, residue K2140 is completely conserved in all strains of the KRM1-dependent enteroviruses. Mutational analysis confirms the importance of K2140 for infection by CVA2-CVA6, and CVA12. Moreover, CVA8, an enterovirus for which the cellular receptor has not yet been identified, also possesses the conserved K2140 residue. We experimentally demonstrate that CVA8 utilizes KRM1 as its receptor, with K2140 being essential for viral infection. Additionally, residue D90 of KRM1 engages with residue K2140 and plays a crucial role in KRM1-mediated enterovirus infections. Collectively, our findings underscore the significance of the absolutely conserved K2140 residue in receptor interactions and infection of all KRM1-binding enteroviruses, providing novel insights into the molecular basis of enterovirus infection and informing the development of broad-spectrum therapies against HFMD.</p><p><strong>Importance: </strong>Hand, foot, and mouth disease (HFMD) annually affects millions of children worldwide. HFMD is caused by various enteroviruses, such as coxsackieviruses CVA6, CVA16, CVA10, and enterovirus 71 (EV-A71). Licensed inactivated EV-A71 vaccines do not provide cross-protection against other enteroviruses. There are no drugs specifically for HFMD. KREMEN1 (KRM1) serves as the cellular receptor for many HFMD-related enteroviruses, including CVA2-CVA6, CVA10, and CVA12. However, the molecular basis for broad recognition of these enteroviruses by the KRM1 receptor remains elusive. Here, we report that VP2 residue K140 (K2140) is completely conserved among all KRM1-dependent enteroviruses and is essential for virus-receptor binding and viral infection by interacting with residue D90 of KRM1. Overall, our findings provide a deeper understanding of the molecular basis of KRM1-dependent enterovirus infection <i>in vitro</i> and <i>in vivo</i> and may contribute to the development of broad-spectrum anti-enterovirus vaccines and treatments.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0304024"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796367/pdf/","citationCount":"0","resultStr":"{\"title\":\"Completely conserved VP2 residue K140 of KREMEN1-dependent enteroviruses is critical for virus-receptor interactions and viral infection.\",\"authors\":\"Zeyu Liu, Xue Li, Xiaohong Li, Xingyu Yan, Yuan Tian, Yue Zhao, Kexin Liu, Pei Hao, Shuye Zhang, Chao Zhang\",\"doi\":\"10.1128/mbio.03040-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The KREMEN1 (KRM1) protein is a cellular receptor for multiple enteroviruses that cause hand, foot, and mouth disease (HFMD), including coxsackievirus CVA2, CVA3, CVA4, CVA5, CVA6, CVA10, and CVA12. The molecular basis for the broad recognition of these viruses by the KRM1 receptor remains unclear. Here, we report the indispensable role of the completely conserved VP2 capsid protein residue K140 (designated K2140) in mediating receptor recognition and infection by CVA10 and other KRM1-dependent enteroviruses. Residue K2140 not only facilitates receptor recognition, cell attachment, and infection of CVA10 but also contributes to CVA10 pathogenicity <i>in vivo</i>. Notably, residue K2140 is completely conserved in all strains of the KRM1-dependent enteroviruses. Mutational analysis confirms the importance of K2140 for infection by CVA2-CVA6, and CVA12. Moreover, CVA8, an enterovirus for which the cellular receptor has not yet been identified, also possesses the conserved K2140 residue. We experimentally demonstrate that CVA8 utilizes KRM1 as its receptor, with K2140 being essential for viral infection. Additionally, residue D90 of KRM1 engages with residue K2140 and plays a crucial role in KRM1-mediated enterovirus infections. Collectively, our findings underscore the significance of the absolutely conserved K2140 residue in receptor interactions and infection of all KRM1-binding enteroviruses, providing novel insights into the molecular basis of enterovirus infection and informing the development of broad-spectrum therapies against HFMD.</p><p><strong>Importance: </strong>Hand, foot, and mouth disease (HFMD) annually affects millions of children worldwide. HFMD is caused by various enteroviruses, such as coxsackieviruses CVA6, CVA16, CVA10, and enterovirus 71 (EV-A71). Licensed inactivated EV-A71 vaccines do not provide cross-protection against other enteroviruses. There are no drugs specifically for HFMD. KREMEN1 (KRM1) serves as the cellular receptor for many HFMD-related enteroviruses, including CVA2-CVA6, CVA10, and CVA12. However, the molecular basis for broad recognition of these enteroviruses by the KRM1 receptor remains elusive. Here, we report that VP2 residue K140 (K2140) is completely conserved among all KRM1-dependent enteroviruses and is essential for virus-receptor binding and viral infection by interacting with residue D90 of KRM1. Overall, our findings provide a deeper understanding of the molecular basis of KRM1-dependent enterovirus infection <i>in vitro</i> and <i>in vivo</i> and may contribute to the development of broad-spectrum anti-enterovirus vaccines and treatments.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":\" \",\"pages\":\"e0304024\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796367/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.03040-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03040-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

KREMEN1 (KRM1)蛋白是导致手足口病(手足口病)的多种肠道病毒的细胞受体,包括柯萨奇病毒CVA2、CVA3、CVA4、CVA5、CVA6、CVA10和CVA12。KRM1受体广泛识别这些病毒的分子基础尚不清楚。在这里,我们报道了完全保守的VP2衣壳蛋白残基K140(指定为K2140)在介导CVA10和其他krm1依赖性肠病毒的受体识别和感染中不可或缺的作用。残基K2140不仅促进CVA10的受体识别、细胞附着和感染,还参与CVA10在体内的致病性。值得注意的是,残基K2140在所有依赖krm1的肠病毒株中都是完全保守的。突变分析证实了K2140对CVA2-CVA6和CVA12感染的重要性。此外,细胞受体尚未确定的肠病毒CVA8也具有保守的K2140残基。我们通过实验证明,CVA8利用KRM1作为其受体,而K2140是病毒感染所必需的。此外,KRM1残基D90与残基K2140结合,在KRM1介导的肠道病毒感染中起着至关重要的作用。总之,我们的发现强调了绝对保守的K2140残基在受体相互作用和所有krm1结合肠道病毒感染中的重要性,为肠道病毒感染的分子基础提供了新的见解,并为开发针对手足口病的广谱治疗提供了信息。重要性:手足口病(HFMD)每年影响全世界数百万儿童。手足口病是由多种肠道病毒引起的,如柯萨奇病毒CVA6、CVA16、CVA10和肠道病毒71 (EV-A71)。获得许可的EV-A71灭活疫苗不能提供针对其他肠道病毒的交叉保护。目前还没有专门针对手足口病的药物。KREMEN1 (KRM1)是许多手足口病相关肠道病毒的细胞受体,包括CVA2-CVA6、CVA10和CVA12。然而,KRM1受体广泛识别这些肠道病毒的分子基础仍然难以捉摸。在这里,我们报道了VP2残基K140 (K2140)在所有依赖KRM1的肠病毒中是完全保守的,并且通过与KRM1残基D90相互作用对病毒受体结合和病毒感染至关重要。总之,我们的研究结果对体外和体内依赖krm1的肠道病毒感染的分子基础有了更深入的了解,并可能有助于开发广谱抗肠道病毒疫苗和治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Completely conserved VP2 residue K140 of KREMEN1-dependent enteroviruses is critical for virus-receptor interactions and viral infection.

The KREMEN1 (KRM1) protein is a cellular receptor for multiple enteroviruses that cause hand, foot, and mouth disease (HFMD), including coxsackievirus CVA2, CVA3, CVA4, CVA5, CVA6, CVA10, and CVA12. The molecular basis for the broad recognition of these viruses by the KRM1 receptor remains unclear. Here, we report the indispensable role of the completely conserved VP2 capsid protein residue K140 (designated K2140) in mediating receptor recognition and infection by CVA10 and other KRM1-dependent enteroviruses. Residue K2140 not only facilitates receptor recognition, cell attachment, and infection of CVA10 but also contributes to CVA10 pathogenicity in vivo. Notably, residue K2140 is completely conserved in all strains of the KRM1-dependent enteroviruses. Mutational analysis confirms the importance of K2140 for infection by CVA2-CVA6, and CVA12. Moreover, CVA8, an enterovirus for which the cellular receptor has not yet been identified, also possesses the conserved K2140 residue. We experimentally demonstrate that CVA8 utilizes KRM1 as its receptor, with K2140 being essential for viral infection. Additionally, residue D90 of KRM1 engages with residue K2140 and plays a crucial role in KRM1-mediated enterovirus infections. Collectively, our findings underscore the significance of the absolutely conserved K2140 residue in receptor interactions and infection of all KRM1-binding enteroviruses, providing novel insights into the molecular basis of enterovirus infection and informing the development of broad-spectrum therapies against HFMD.

Importance: Hand, foot, and mouth disease (HFMD) annually affects millions of children worldwide. HFMD is caused by various enteroviruses, such as coxsackieviruses CVA6, CVA16, CVA10, and enterovirus 71 (EV-A71). Licensed inactivated EV-A71 vaccines do not provide cross-protection against other enteroviruses. There are no drugs specifically for HFMD. KREMEN1 (KRM1) serves as the cellular receptor for many HFMD-related enteroviruses, including CVA2-CVA6, CVA10, and CVA12. However, the molecular basis for broad recognition of these enteroviruses by the KRM1 receptor remains elusive. Here, we report that VP2 residue K140 (K2140) is completely conserved among all KRM1-dependent enteroviruses and is essential for virus-receptor binding and viral infection by interacting with residue D90 of KRM1. Overall, our findings provide a deeper understanding of the molecular basis of KRM1-dependent enterovirus infection in vitro and in vivo and may contribute to the development of broad-spectrum anti-enterovirus vaccines and treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
期刊最新文献
Exploring the interaction between endornavirus and Sclerotinia sclerotiorum: mechanisms of phytopathogenic fungal virulence and antivirus. HSP90 interacts with VP37 to facilitate the cell-to-cell movement of broad bean wilt virus 2. Large diversity in the O-chain biosynthetic cluster within populations of Pelagibacterales. Microbiota does not influence tumor development in two models of heritable cancer. Gene regulatory network resource aids in predicting trans-acting regulators of biosynthetic gene clusters in Aspergillus fumigatus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1