一种柔性光栅结构色彩的触觉感知方法。

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-11-15 eCollection Date: 2025-01-01 DOI:10.1093/nsr/nwae413
Yuze Qiu, Chunfei Yan, Yan Zhang, Shengxuan Yang, Xiang Yao, Fawen Ai, Jinjin Zheng, Shiwu Zhang, Xinge Yu, Erbao Dong
{"title":"一种柔性光栅结构色彩的触觉感知方法。","authors":"Yuze Qiu, Chunfei Yan, Yan Zhang, Shengxuan Yang, Xiang Yao, Fawen Ai, Jinjin Zheng, Shiwu Zhang, Xinge Yu, Erbao Dong","doi":"10.1093/nsr/nwae413","DOIUrl":null,"url":null,"abstract":"<p><p>Affordable high-resolution cameras and state-of-the-art computer vision techniques have led to the emergence of various vision-based tactile sensors. However, current vision-based tactile sensors mainly depend on geometric optics or marker tracking for tactile assessments, resulting in limited performance. To solve this dilemma, we introduce optical interference patterns as the visual representation of tactile information for flexible tactile sensors. We propose a novel tactile perception method and its corresponding sensor, combining structural colors from flexible blazed gratings with deep learning. The richer structural colors and finer data processing foster the tactile estimation performance. The proposed sensor has an overall normal force magnitude accuracy of 6 mN, a planar resolution of 79 μm and a contact-depth resolution of 25 μm. This work presents a promising tactile method that combines wave optics, soft materials and machine learning. It performs well in tactile measurement, and can be expanded into multiple sensing fields.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":"nwae413"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702659/pdf/","citationCount":"0","resultStr":"{\"title\":\"A tactile perception method with flexible grating structural color.\",\"authors\":\"Yuze Qiu, Chunfei Yan, Yan Zhang, Shengxuan Yang, Xiang Yao, Fawen Ai, Jinjin Zheng, Shiwu Zhang, Xinge Yu, Erbao Dong\",\"doi\":\"10.1093/nsr/nwae413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Affordable high-resolution cameras and state-of-the-art computer vision techniques have led to the emergence of various vision-based tactile sensors. However, current vision-based tactile sensors mainly depend on geometric optics or marker tracking for tactile assessments, resulting in limited performance. To solve this dilemma, we introduce optical interference patterns as the visual representation of tactile information for flexible tactile sensors. We propose a novel tactile perception method and its corresponding sensor, combining structural colors from flexible blazed gratings with deep learning. The richer structural colors and finer data processing foster the tactile estimation performance. The proposed sensor has an overall normal force magnitude accuracy of 6 mN, a planar resolution of 79 μm and a contact-depth resolution of 25 μm. This work presents a promising tactile method that combines wave optics, soft materials and machine learning. It performs well in tactile measurement, and can be expanded into multiple sensing fields.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 1\",\"pages\":\"nwae413\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae413\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae413","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

经济实惠的高分辨率相机和最先进的计算机视觉技术导致了各种基于视觉的触觉传感器的出现。然而,目前基于视觉的触觉传感器主要依靠几何光学或标记跟踪进行触觉评估,导致性能有限。为了解决这一难题,我们引入了光学干涉模式作为柔性触觉传感器触觉信息的视觉表示。我们提出了一种新的触觉感知方法及其相应的传感器,将柔性光栅的结构颜色与深度学习相结合。更丰富的结构色彩和更精细的数据处理促进了触觉估计的性能。该传感器的总法向力大小精度为6 mN,平面分辨率为79 μm,接触深度分辨率为25 μm。这项工作提出了一种结合了波光学、软材料和机器学习的有前途的触觉方法。它具有良好的触觉测量性能,可扩展到多个传感领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A tactile perception method with flexible grating structural color.

Affordable high-resolution cameras and state-of-the-art computer vision techniques have led to the emergence of various vision-based tactile sensors. However, current vision-based tactile sensors mainly depend on geometric optics or marker tracking for tactile assessments, resulting in limited performance. To solve this dilemma, we introduce optical interference patterns as the visual representation of tactile information for flexible tactile sensors. We propose a novel tactile perception method and its corresponding sensor, combining structural colors from flexible blazed gratings with deep learning. The richer structural colors and finer data processing foster the tactile estimation performance. The proposed sensor has an overall normal force magnitude accuracy of 6 mN, a planar resolution of 79 μm and a contact-depth resolution of 25 μm. This work presents a promising tactile method that combines wave optics, soft materials and machine learning. It performs well in tactile measurement, and can be expanded into multiple sensing fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
US-China cooperation and competition in science and technology. Cretaceous chewing-louse eggs on enantiornithine birds. Element cycling by environmental viruses. Reversible biomass aerogels with flame retardancy and smart elasticity. Core factor of NEXT complex, ZCCHC8, governs the silencing of LINE1 during spermatogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1