Rene Flores Clavo, Danny Omar Suclupe-Campos, Luis Castillo Rivadeneira, Ricardo Leonidas de Jesus Velez Chicoma, Marilín Sánchez-Purihuamán, Kevin Gabriel Quispe Choque, Fanny L Casado Peña, Milena Binatti Ferreira, Fabiana Fantinatti Garboggini, Carmen Carreño-Farfan
{"title":"利用芦笋pgpr促进玉米生长和产量的研究。","authors":"Rene Flores Clavo, Danny Omar Suclupe-Campos, Luis Castillo Rivadeneira, Ricardo Leonidas de Jesus Velez Chicoma, Marilín Sánchez-Purihuamán, Kevin Gabriel Quispe Choque, Fanny L Casado Peña, Milena Binatti Ferreira, Fabiana Fantinatti Garboggini, Carmen Carreño-Farfan","doi":"10.1007/s00248-025-02490-8","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru. This region has high soil salinity levels. Seventeen strains were isolated, four of which are major potential plant growth-promoting traits, and were characterized based on their morphological and molecular characteristics. These salt-tolerant bacteria were screened for phosphate solubilization, indole acetic acid, deaminase activity, and molecular characterization by 16S rDNA sequencing. Fifteen samples were from saline soils of A. officinalis plants in the northern coastal desert of San Jose, Lambayeque, Peru. The bacterial isolates were screened in a range of salt tolerances from 3 to 6%. Isolates 05, 08, 09, and 11 presented maximum salt tolerance, ammonium quantification, phosphate solubilization, and IAA production. The four isolates were identified by sequencing the amplified 16S rRNA gene and were found to be Enterobacter sp. 05 (OQ885483), Enterobacter sp. 08 (OQ885484), Pseudomonas sp. 09 (OR398704) and Klebsiella sp. 11 (OR398705). These microorganisms promoted the germination of Zea mays L. plants, increased the germination rates in the treatments with chemical fertilizers at 100% and 50%, and the PGPRs increased the height and length of the roots 40 days after planting. The beneficial effects of salt-tolerant PGPR isolates isolated from saline environments may lead to new species that can be used to overcome the detrimental effects of salt stress on plants. The biochemical response and inoculation of the three isolates prove the potential of these strains as sources of products to develop new compounds, confirming their potential as biofertilizers for saline environments.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"174"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750925/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harnessing PGPRs from Asparagus officinalis to Increase the Growth and Yield of Zea mays L.\",\"authors\":\"Rene Flores Clavo, Danny Omar Suclupe-Campos, Luis Castillo Rivadeneira, Ricardo Leonidas de Jesus Velez Chicoma, Marilín Sánchez-Purihuamán, Kevin Gabriel Quispe Choque, Fanny L Casado Peña, Milena Binatti Ferreira, Fabiana Fantinatti Garboggini, Carmen Carreño-Farfan\",\"doi\":\"10.1007/s00248-025-02490-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru. This region has high soil salinity levels. Seventeen strains were isolated, four of which are major potential plant growth-promoting traits, and were characterized based on their morphological and molecular characteristics. These salt-tolerant bacteria were screened for phosphate solubilization, indole acetic acid, deaminase activity, and molecular characterization by 16S rDNA sequencing. Fifteen samples were from saline soils of A. officinalis plants in the northern coastal desert of San Jose, Lambayeque, Peru. The bacterial isolates were screened in a range of salt tolerances from 3 to 6%. Isolates 05, 08, 09, and 11 presented maximum salt tolerance, ammonium quantification, phosphate solubilization, and IAA production. The four isolates were identified by sequencing the amplified 16S rRNA gene and were found to be Enterobacter sp. 05 (OQ885483), Enterobacter sp. 08 (OQ885484), Pseudomonas sp. 09 (OR398704) and Klebsiella sp. 11 (OR398705). These microorganisms promoted the germination of Zea mays L. plants, increased the germination rates in the treatments with chemical fertilizers at 100% and 50%, and the PGPRs increased the height and length of the roots 40 days after planting. The beneficial effects of salt-tolerant PGPR isolates isolated from saline environments may lead to new species that can be used to overcome the detrimental effects of salt stress on plants. The biochemical response and inoculation of the three isolates prove the potential of these strains as sources of products to develop new compounds, confirming their potential as biofertilizers for saline environments.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"87 1\",\"pages\":\"174\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750925/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-025-02490-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02490-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Harnessing PGPRs from Asparagus officinalis to Increase the Growth and Yield of Zea mays L.
Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru. This region has high soil salinity levels. Seventeen strains were isolated, four of which are major potential plant growth-promoting traits, and were characterized based on their morphological and molecular characteristics. These salt-tolerant bacteria were screened for phosphate solubilization, indole acetic acid, deaminase activity, and molecular characterization by 16S rDNA sequencing. Fifteen samples were from saline soils of A. officinalis plants in the northern coastal desert of San Jose, Lambayeque, Peru. The bacterial isolates were screened in a range of salt tolerances from 3 to 6%. Isolates 05, 08, 09, and 11 presented maximum salt tolerance, ammonium quantification, phosphate solubilization, and IAA production. The four isolates were identified by sequencing the amplified 16S rRNA gene and were found to be Enterobacter sp. 05 (OQ885483), Enterobacter sp. 08 (OQ885484), Pseudomonas sp. 09 (OR398704) and Klebsiella sp. 11 (OR398705). These microorganisms promoted the germination of Zea mays L. plants, increased the germination rates in the treatments with chemical fertilizers at 100% and 50%, and the PGPRs increased the height and length of the roots 40 days after planting. The beneficial effects of salt-tolerant PGPR isolates isolated from saline environments may lead to new species that can be used to overcome the detrimental effects of salt stress on plants. The biochemical response and inoculation of the three isolates prove the potential of these strains as sources of products to develop new compounds, confirming their potential as biofertilizers for saline environments.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.