Zhipeng Du, Xu Chen, Wei Liu, Han Wang, Qianting Xu, Xiaoying Shang, Yipeng Song, Xueyuan Chen, Junhua Luo, Sangen Zhao
{"title":"设计以孤对电子为化学剪刀的二维范德华氧化物。","authors":"Zhipeng Du, Xu Chen, Wei Liu, Han Wang, Qianting Xu, Xiaoying Shang, Yipeng Song, Xueyuan Chen, Junhua Luo, Sangen Zhao","doi":"10.1093/nsr/nwae370","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e. InSbMoO<sub>6</sub>, with Sb<sup>3+</sup> lone-pair electrons serving as chemical scissor to generate its 2D vdW crystal structure. Monolayer and few-layer InSbMoO<sub>6</sub> flakes are readily obtained via facile mechanical exfoliation. They exhibit strong second-harmonic generation (SHG) response with an effective second-order nonlinear optical susceptibility [Formula: see text]of 32.4 pm·V<sup>-1</sup>. Meanwhile, the SHG response is in-plane anisotropic and directly proportional to the layer thickness, independent of layer parity. In addition, the InSbMoO<sub>6</sub> flakes exhibit excellent thermal and atmospheric stability, along with pronounced anisotropy in Raman spectroscopy. This work implies that using lone-pair electrons as chemical scissor is an effective strategy for designing and synthesizing new 2D vdW materials for integrated photonic applications.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":"nwae370"},"PeriodicalIF":16.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702660/pdf/","citationCount":"0","resultStr":"{\"title\":\"Designing a 2D van der Waals oxide with lone-pair electrons as chemical scissor.\",\"authors\":\"Zhipeng Du, Xu Chen, Wei Liu, Han Wang, Qianting Xu, Xiaoying Shang, Yipeng Song, Xueyuan Chen, Junhua Luo, Sangen Zhao\",\"doi\":\"10.1093/nsr/nwae370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e. InSbMoO<sub>6</sub>, with Sb<sup>3+</sup> lone-pair electrons serving as chemical scissor to generate its 2D vdW crystal structure. Monolayer and few-layer InSbMoO<sub>6</sub> flakes are readily obtained via facile mechanical exfoliation. They exhibit strong second-harmonic generation (SHG) response with an effective second-order nonlinear optical susceptibility [Formula: see text]of 32.4 pm·V<sup>-1</sup>. Meanwhile, the SHG response is in-plane anisotropic and directly proportional to the layer thickness, independent of layer parity. In addition, the InSbMoO<sub>6</sub> flakes exhibit excellent thermal and atmospheric stability, along with pronounced anisotropy in Raman spectroscopy. This work implies that using lone-pair electrons as chemical scissor is an effective strategy for designing and synthesizing new 2D vdW materials for integrated photonic applications.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 1\",\"pages\":\"nwae370\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702660/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae370\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae370","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Designing a 2D van der Waals oxide with lone-pair electrons as chemical scissor.
Two-dimensional (2D) van der Waals (vdW) materials are known for their intriguing physical properties, but their rational design and synthesis remain a great challenge for chemists. In this work, we successfully synthesized a new non-centrosymmetric oxide, i.e. InSbMoO6, with Sb3+ lone-pair electrons serving as chemical scissor to generate its 2D vdW crystal structure. Monolayer and few-layer InSbMoO6 flakes are readily obtained via facile mechanical exfoliation. They exhibit strong second-harmonic generation (SHG) response with an effective second-order nonlinear optical susceptibility [Formula: see text]of 32.4 pm·V-1. Meanwhile, the SHG response is in-plane anisotropic and directly proportional to the layer thickness, independent of layer parity. In addition, the InSbMoO6 flakes exhibit excellent thermal and atmospheric stability, along with pronounced anisotropy in Raman spectroscopy. This work implies that using lone-pair electrons as chemical scissor is an effective strategy for designing and synthesizing new 2D vdW materials for integrated photonic applications.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.