打开离子热电材料的新可能性:机器学习的视角。

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-11-23 eCollection Date: 2025-01-01 DOI:10.1093/nsr/nwae411
Yidan Wu, Dongxing Song, Meng An, Cheng Chi, Chunyu Zhao, Bing Yao, Weigang Ma, Xing Zhang
{"title":"打开离子热电材料的新可能性:机器学习的视角。","authors":"Yidan Wu, Dongxing Song, Meng An, Cheng Chi, Chunyu Zhao, Bing Yao, Weigang Ma, Xing Zhang","doi":"10.1093/nsr/nwae411","DOIUrl":null,"url":null,"abstract":"<p><p>The high thermopower of ionic thermoelectric (<i>i</i>-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of <i>i</i>-TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an <i>R</i> <sup>2</sup> of 0.98 on the test dataset. Using this tool, we experimentally identify a waterborne polyurethane/potassium iodide ionogel with a Seebeck coefficient of 41.39 mV/K. Furthermore, interpretable analysis reveals that the number of rotatable bonds and the octanol-water partition coefficient of ions negatively affect Seebeck coefficients, which is corroborated by molecular dynamics simulations. This machine learning-assisted framework represents a pioneering effort in the <i>i</i>-TE field, offering significant promise for accelerating the discovery and development of high-performance <i>i</i>-TE materials.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":"nwae411"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702661/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unlocking new possibilities in ionic thermoelectric materials: a machine learning perspective.\",\"authors\":\"Yidan Wu, Dongxing Song, Meng An, Cheng Chi, Chunyu Zhao, Bing Yao, Weigang Ma, Xing Zhang\",\"doi\":\"10.1093/nsr/nwae411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high thermopower of ionic thermoelectric (<i>i</i>-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of <i>i</i>-TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an <i>R</i> <sup>2</sup> of 0.98 on the test dataset. Using this tool, we experimentally identify a waterborne polyurethane/potassium iodide ionogel with a Seebeck coefficient of 41.39 mV/K. Furthermore, interpretable analysis reveals that the number of rotatable bonds and the octanol-water partition coefficient of ions negatively affect Seebeck coefficients, which is corroborated by molecular dynamics simulations. This machine learning-assisted framework represents a pioneering effort in the <i>i</i>-TE field, offering significant promise for accelerating the discovery and development of high-performance <i>i</i>-TE materials.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 1\",\"pages\":\"nwae411\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702661/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae411\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae411","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

离子热电(i-TE)材料的高热功率为小型化废热回收装置和热传感器带来了希望。然而,缺乏理论基础的艰苦的试错实验阻碍了进展。在此,通过引入简化的分子输入线输入系统,我们解决了i-TE材料类型不一致带来的挑战,并提出了一个机器学习模型,该模型在测试数据集上评估塞贝克系数的r2为0.98。利用该工具,我们实验鉴定了一种塞贝克系数为41.39 mV/K的水性聚氨酯/碘化钾离子凝胶。此外,可解释分析表明,可旋转键数和离子的辛醇-水分配系数对塞贝克系数有负影响,这一点得到了分子动力学模拟的证实。这种机器学习辅助框架代表了i-TE领域的开创性努力,为加速高性能i-TE材料的发现和开发提供了重大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unlocking new possibilities in ionic thermoelectric materials: a machine learning perspective.

The high thermopower of ionic thermoelectric (i-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of i-TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an R 2 of 0.98 on the test dataset. Using this tool, we experimentally identify a waterborne polyurethane/potassium iodide ionogel with a Seebeck coefficient of 41.39 mV/K. Furthermore, interpretable analysis reveals that the number of rotatable bonds and the octanol-water partition coefficient of ions negatively affect Seebeck coefficients, which is corroborated by molecular dynamics simulations. This machine learning-assisted framework represents a pioneering effort in the i-TE field, offering significant promise for accelerating the discovery and development of high-performance i-TE materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
US-China cooperation and competition in science and technology. Cretaceous chewing-louse eggs on enantiornithine birds. Element cycling by environmental viruses. Reversible biomass aerogels with flame retardancy and smart elasticity. Core factor of NEXT complex, ZCCHC8, governs the silencing of LINE1 during spermatogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1