Junchol Park, Peter Polidoro, Catia Fortunato, Jon Arnold, Brett Mensh, Juan A Gallego, Joshua T Dudman
{"title":"新皮层和纹状体共同规范作用。","authors":"Junchol Park, Peter Polidoro, Catia Fortunato, Jon Arnold, Brett Mensh, Juan A Gallego, Joshua T Dudman","doi":"10.1016/j.neuron.2024.12.024","DOIUrl":null,"url":null,"abstract":"<p><p>The interplay between two major forebrain structures-cortex and subcortical striatum-is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated, while the primary motor cortex is involved in specifying the continuous parameters of an upcoming/ongoing movement. Recent data indicate that striatum may also be involved in specification. These alternatives have been difficult to reconcile because comparing very distinct actions, as is often done, makes essentially indistinguishable predictions. Here, we develop quantitative models to reveal a somewhat paradoxical insight: only comparing neural activity across similar actions makes strongly distinguishing predictions. We thus developed a novel reach-to-pull task in which mice reliably selected between two similar but distinct reach targets and pull forces. Simultaneous cortical and subcortical recordings were uniquely consistent with a model in which cortex and striatum jointly specify continuous parameters governing movement execution.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":"620-636.e6"},"PeriodicalIF":14.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjoint specification of action by neocortex and striatum.\",\"authors\":\"Junchol Park, Peter Polidoro, Catia Fortunato, Jon Arnold, Brett Mensh, Juan A Gallego, Joshua T Dudman\",\"doi\":\"10.1016/j.neuron.2024.12.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The interplay between two major forebrain structures-cortex and subcortical striatum-is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated, while the primary motor cortex is involved in specifying the continuous parameters of an upcoming/ongoing movement. Recent data indicate that striatum may also be involved in specification. These alternatives have been difficult to reconcile because comparing very distinct actions, as is often done, makes essentially indistinguishable predictions. Here, we develop quantitative models to reveal a somewhat paradoxical insight: only comparing neural activity across similar actions makes strongly distinguishing predictions. We thus developed a novel reach-to-pull task in which mice reliably selected between two similar but distinct reach targets and pull forces. Simultaneous cortical and subcortical recordings were uniquely consistent with a model in which cortex and striatum jointly specify continuous parameters governing movement execution.</p>\",\"PeriodicalId\":19313,\"journal\":{\"name\":\"Neuron\",\"volume\":\" \",\"pages\":\"620-636.e6\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuron\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuron.2024.12.024\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.12.024","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Conjoint specification of action by neocortex and striatum.
The interplay between two major forebrain structures-cortex and subcortical striatum-is critical for flexible, goal-directed action. Traditionally, it has been proposed that striatum is critical for selecting what type of action is initiated, while the primary motor cortex is involved in specifying the continuous parameters of an upcoming/ongoing movement. Recent data indicate that striatum may also be involved in specification. These alternatives have been difficult to reconcile because comparing very distinct actions, as is often done, makes essentially indistinguishable predictions. Here, we develop quantitative models to reveal a somewhat paradoxical insight: only comparing neural activity across similar actions makes strongly distinguishing predictions. We thus developed a novel reach-to-pull task in which mice reliably selected between two similar but distinct reach targets and pull forces. Simultaneous cortical and subcortical recordings were uniquely consistent with a model in which cortex and striatum jointly specify continuous parameters governing movement execution.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.