Omar Ghazal, Wei Wang, Shahar Kvatinsky, Farhad Merchant, Alex Yakovlev, Rishad Shafik
{"title":"影响:基于Y-FlAsh技术的合并Tsetlin机器推理的内存计算架构。","authors":"Omar Ghazal, Wei Wang, Shahar Kvatinsky, Farhad Merchant, Alex Yakovlev, Rishad Shafik","doi":"10.1098/rsta.2023.0393","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process. Y-Flash devices have recently been demonstrated for digital and analogue memory applications; they offer high yield, non-volatility and low power consumption. IMPACT leverages the Y-Flash array to implement the inference of a novel ML algorithm: coalesced Tsetlin machine (CoTM) based on propositional logic. CoTM utilizes Tsetlin automata (TA) to create Boolean feature selections stochastically across parallel clauses. IMPACT is organized into two computational crossbars for storing the TA and weights. Through validation on the MNIST dataset, IMPACT achieved [Formula: see text] accuracy. IMPACT demonstrated improvements in energy efficiency, e.g. factors of 2.23 over CNN-based ReRAM, 2.46 over neuromorphic using NOR-Flash and 2.06 over DNN-based phase-change memory (PCM), suited for modern ML inference applications.This article is part of the theme issue 'Emerging technologies for future secure computing platforms'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2288","pages":"20230393"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736465/pdf/","citationCount":"0","resultStr":"{\"title\":\"IMPACT: In-Memory ComPuting Architecture based on Y-FlAsh Technology for Coalesced Tsetlin machine inference.\",\"authors\":\"Omar Ghazal, Wei Wang, Shahar Kvatinsky, Farhad Merchant, Alex Yakovlev, Rishad Shafik\",\"doi\":\"10.1098/rsta.2023.0393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process. Y-Flash devices have recently been demonstrated for digital and analogue memory applications; they offer high yield, non-volatility and low power consumption. IMPACT leverages the Y-Flash array to implement the inference of a novel ML algorithm: coalesced Tsetlin machine (CoTM) based on propositional logic. CoTM utilizes Tsetlin automata (TA) to create Boolean feature selections stochastically across parallel clauses. IMPACT is organized into two computational crossbars for storing the TA and weights. Through validation on the MNIST dataset, IMPACT achieved [Formula: see text] accuracy. IMPACT demonstrated improvements in energy efficiency, e.g. factors of 2.23 over CNN-based ReRAM, 2.46 over neuromorphic using NOR-Flash and 2.06 over DNN-based phase-change memory (PCM), suited for modern ML inference applications.This article is part of the theme issue 'Emerging technologies for future secure computing platforms'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2288\",\"pages\":\"20230393\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11736465/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2023.0393\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2023.0393","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
IMPACT: In-Memory ComPuting Architecture based on Y-FlAsh Technology for Coalesced Tsetlin machine inference.
The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process. Y-Flash devices have recently been demonstrated for digital and analogue memory applications; they offer high yield, non-volatility and low power consumption. IMPACT leverages the Y-Flash array to implement the inference of a novel ML algorithm: coalesced Tsetlin machine (CoTM) based on propositional logic. CoTM utilizes Tsetlin automata (TA) to create Boolean feature selections stochastically across parallel clauses. IMPACT is organized into two computational crossbars for storing the TA and weights. Through validation on the MNIST dataset, IMPACT achieved [Formula: see text] accuracy. IMPACT demonstrated improvements in energy efficiency, e.g. factors of 2.23 over CNN-based ReRAM, 2.46 over neuromorphic using NOR-Flash and 2.06 over DNN-based phase-change memory (PCM), suited for modern ML inference applications.This article is part of the theme issue 'Emerging technologies for future secure computing platforms'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.