伪结底物的RNase P切割揭示了活性位点结构的差异,这取决于5'先导物中的残基N-1。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY RNA Biology Pub Date : 2025-12-01 Epub Date: 2025-01-20 DOI:10.1080/15476286.2024.2427906
David M Kosek, J Luis Leal, Ema Kikovska-Stojanovska, Guanzhong Mao, Shiying Wu, Samuel C Flores, Leif A Kirsebom
{"title":"伪结底物的RNase P切割揭示了活性位点结构的差异,这取决于5'先导物中的残基N-1。","authors":"David M Kosek, J Luis Leal, Ema Kikovska-Stojanovska, Guanzhong Mao, Shiying Wu, Samuel C Flores, Leif A Kirsebom","doi":"10.1080/15476286.2024.2427906","DOIUrl":null,"url":null,"abstract":"<p><p>We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site. The frequencies of cleavage at these two sites and Mg<sup>2+</sup> binding change upon altering the structural topology in the vicinity of the cleavage site as well as by replacing Mg<sup>2+</sup> with other divalent metal ions. Modelling studies of RPR in complex with the pseudoknot substrates suggest alternative structural topologies for cleavage at the main and the alternative site and a shift in positioning of Mg<sup>2+</sup> that activates the H<sub>2</sub>O nucleophile. Together, our data are consistent with a model where the organization of the active site structure and positioning of Mg<sup>2+</sup> is influenced by the identities of residues at and in the vicinity of the site of cleavage.</p>","PeriodicalId":21351,"journal":{"name":"RNA Biology","volume":"22 1","pages":"1-19"},"PeriodicalIF":3.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNase P cleavage of pseudoknot substrates reveals differences in active site architecture that depend on residue N-1 in the 5' leader.\",\"authors\":\"David M Kosek, J Luis Leal, Ema Kikovska-Stojanovska, Guanzhong Mao, Shiying Wu, Samuel C Flores, Leif A Kirsebom\",\"doi\":\"10.1080/15476286.2024.2427906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site. The frequencies of cleavage at these two sites and Mg<sup>2+</sup> binding change upon altering the structural topology in the vicinity of the cleavage site as well as by replacing Mg<sup>2+</sup> with other divalent metal ions. Modelling studies of RPR in complex with the pseudoknot substrates suggest alternative structural topologies for cleavage at the main and the alternative site and a shift in positioning of Mg<sup>2+</sup> that activates the H<sub>2</sub>O nucleophile. Together, our data are consistent with a model where the organization of the active site structure and positioning of Mg<sup>2+</sup> is influenced by the identities of residues at and in the vicinity of the site of cleavage.</p>\",\"PeriodicalId\":21351,\"journal\":{\"name\":\"RNA Biology\",\"volume\":\"22 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15476286.2024.2427906\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15476286.2024.2427906","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们发现了一个小的生物素结合RNA适体,折叠成假结结构,作为细菌RNase P RNA (RPR)的底物,无论是否含有RNase P C5蛋白。环路1单链区域的切割被证明依赖于底物3'端rcca基序的存在。紧邻裂解位点5′位置的核碱基和2′羟基有助于裂解效率和位点选择,其中该位置的C在主裂解位点上游一个碱基的替代位点诱导显著的裂解。通过改变裂解位点附近的结构拓扑以及用其他二价金属离子取代Mg2+,这两个位点的裂解频率和Mg2+结合频率发生了变化。假结底物复合物中RPR的模拟研究表明,在主位点和替代位点上的切割结构拓扑是不同的,Mg2+的位置发生了变化,激活了H2O亲核试剂。总之,我们的数据与一个模型一致,即活性位点结构的组织和Mg2+的定位受到裂解位点及其附近残基的身份的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RNase P cleavage of pseudoknot substrates reveals differences in active site architecture that depend on residue N-1 in the 5' leader.

We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site. The frequencies of cleavage at these two sites and Mg2+ binding change upon altering the structural topology in the vicinity of the cleavage site as well as by replacing Mg2+ with other divalent metal ions. Modelling studies of RPR in complex with the pseudoknot substrates suggest alternative structural topologies for cleavage at the main and the alternative site and a shift in positioning of Mg2+ that activates the H2O nucleophile. Together, our data are consistent with a model where the organization of the active site structure and positioning of Mg2+ is influenced by the identities of residues at and in the vicinity of the site of cleavage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RNA Biology
RNA Biology 生物-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
82
审稿时长
1 months
期刊介绍: RNA has played a central role in all cellular processes since the beginning of life: decoding the genome, regulating gene expression, mediating molecular interactions, catalyzing chemical reactions. RNA Biology, as a leading journal in the field, provides a platform for presenting and discussing cutting-edge RNA research. RNA Biology brings together a multidisciplinary community of scientists working in the areas of: Transcription and splicing Post-transcriptional regulation of gene expression Non-coding RNAs RNA localization Translation and catalysis by RNA Structural biology Bioinformatics RNA in disease and therapy
期刊最新文献
Identification of deleterious non-synonymous single nucleotide polymorphisms in the mRNA decay activator ZFP36L2. The role and function of lncRNA in ageing-associated liver diseases. EIciRNAs in focus: current understanding and future perspectives. The regulatory roles of RNA-binding proteins in the tumour immune microenvironment of gastrointestinal malignancies. Relevance of RNA to the therapeutic efficacy of mesenchymal stromal/stem cells extracellular vesicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1