{"title":"通过调控陆地棉高温上调基因酪蛋白激酶I启动子中的顺式元件逆转花药耐热性。","authors":"Yanlong Li, Yinuo Fu, Yaoyao Li, Rui Zhang, Jing Yang, Huanhuan Ma, Ling Min, Xianlong Zhang","doi":"10.1007/s11427-024-2755-9","DOIUrl":null,"url":null,"abstract":"<p><p>High temperature (HT) stress causes male sterility, leading to reduced upland cotton yield. Previously, we identified a key gene, Casein Kinase I (GhCKI), that negatively regulates male fertility in upland cotton under HT. However, conventional genetic manipulations of GhCKI would result in male sterility, hindering its utilization in breeding programs. Here, we engineered quantitative variation for anther thermotolerance-related traits in upland cotton by creating weak promoter alleles of GhCKI genes, using CRISPR/Cas9 and CRISPR/Cpf1 genome editing. Then, we screened and identified two new upland cotton plant lines exhibiting a HT-tolerant phenotype with edited GhCKI promoters, and characterized their corresponding heat-tolerant allelic genotypes. Further research revealed that the primary reason for the HT tolerance of the GhCKI promoter editing mutants is that the trans-acting factors GhMYB73 and GhMYB4, which positively regulate GhCKI expression under HT, failed to bind and activate the expression of GhCKI. Overall, our study not only provides a rapid strategy to generate new beneficial alleles but also offers novel germplasm resources and molecular insights for crop HT tolerance breeding.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversing anther thermotolerance by manipulating the cis-elements in the promoter of a high-temperature upregulated gene Casein Kinase I in upland cotton.\",\"authors\":\"Yanlong Li, Yinuo Fu, Yaoyao Li, Rui Zhang, Jing Yang, Huanhuan Ma, Ling Min, Xianlong Zhang\",\"doi\":\"10.1007/s11427-024-2755-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High temperature (HT) stress causes male sterility, leading to reduced upland cotton yield. Previously, we identified a key gene, Casein Kinase I (GhCKI), that negatively regulates male fertility in upland cotton under HT. However, conventional genetic manipulations of GhCKI would result in male sterility, hindering its utilization in breeding programs. Here, we engineered quantitative variation for anther thermotolerance-related traits in upland cotton by creating weak promoter alleles of GhCKI genes, using CRISPR/Cas9 and CRISPR/Cpf1 genome editing. Then, we screened and identified two new upland cotton plant lines exhibiting a HT-tolerant phenotype with edited GhCKI promoters, and characterized their corresponding heat-tolerant allelic genotypes. Further research revealed that the primary reason for the HT tolerance of the GhCKI promoter editing mutants is that the trans-acting factors GhMYB73 and GhMYB4, which positively regulate GhCKI expression under HT, failed to bind and activate the expression of GhCKI. Overall, our study not only provides a rapid strategy to generate new beneficial alleles but also offers novel germplasm resources and molecular insights for crop HT tolerance breeding.</p>\",\"PeriodicalId\":21576,\"journal\":{\"name\":\"Science China Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11427-024-2755-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2755-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Reversing anther thermotolerance by manipulating the cis-elements in the promoter of a high-temperature upregulated gene Casein Kinase I in upland cotton.
High temperature (HT) stress causes male sterility, leading to reduced upland cotton yield. Previously, we identified a key gene, Casein Kinase I (GhCKI), that negatively regulates male fertility in upland cotton under HT. However, conventional genetic manipulations of GhCKI would result in male sterility, hindering its utilization in breeding programs. Here, we engineered quantitative variation for anther thermotolerance-related traits in upland cotton by creating weak promoter alleles of GhCKI genes, using CRISPR/Cas9 and CRISPR/Cpf1 genome editing. Then, we screened and identified two new upland cotton plant lines exhibiting a HT-tolerant phenotype with edited GhCKI promoters, and characterized their corresponding heat-tolerant allelic genotypes. Further research revealed that the primary reason for the HT tolerance of the GhCKI promoter editing mutants is that the trans-acting factors GhMYB73 and GhMYB4, which positively regulate GhCKI expression under HT, failed to bind and activate the expression of GhCKI. Overall, our study not only provides a rapid strategy to generate new beneficial alleles but also offers novel germplasm resources and molecular insights for crop HT tolerance breeding.
期刊介绍:
Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.