大脑的环境富集和表观遗传变化:从外部到内部。

Q1 Biochemistry, Genetics and Molecular Biology Sub-cellular biochemistry Pub Date : 2025-01-01 DOI:10.1007/978-3-031-75980-2_6
Rodrigo F Torres, Nuria Llontop, C Sofía Espinoza, Bredford Kerr
{"title":"大脑的环境富集和表观遗传变化:从外部到内部。","authors":"Rodrigo F Torres, Nuria Llontop, C Sofía Espinoza, Bredford Kerr","doi":"10.1007/978-3-031-75980-2_6","DOIUrl":null,"url":null,"abstract":"<p><p>The brain plays a vital role in maintaining homeostasis and effective interaction with the environment, shaped by genetic and environmental factors throughout neurodevelopment and maturity. While genetic components dictate initial neurodevelopment stages, epigenetics-specifically neuroepigenetics-modulates gene expression in response to environmental influences, allowing for brain adaptability and plasticity. This interplay is particularly evident in neuropathologies like Rett syndrome and CDKL5 deficiency syndrome, where disruptions in neuroepigenetic processes underline significant cognitive and motor impairments. The environmental enrichment paradigm, introduced by Donald Hebb in the late 1940s, demonstrates how enriching stimuli-such as complex sensory, social, and cognitive inputs-affect brain structure and function. Despite methodological variability, evidence reveals that enriched environments catalyze beneficial changes in behavior and neuroanatomy, including increased synaptic plasticity, enhanced motor coordination, and improved cognitive performance in rodent models. Additionally, environmental enrichment induces epigenetic modifications that facilitate these outcomes, highlighting the necessity of understanding the mechanisms driving gene expression changes within the context of enriched experiences. Ultimately, this manifold relationship between environment, neuroepigenetic modulation, and brain function highlights the brain's capacity for change, reinforcing the importance of considering environmental factors in studies of neurodevelopment and therapy for neurological disorders.</p>","PeriodicalId":21991,"journal":{"name":"Sub-cellular biochemistry","volume":"108 ","pages":"217-230"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environmental Enrichment and Epigenetic Changes in the Brain: From the Outside to the Deep Inside.\",\"authors\":\"Rodrigo F Torres, Nuria Llontop, C Sofía Espinoza, Bredford Kerr\",\"doi\":\"10.1007/978-3-031-75980-2_6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain plays a vital role in maintaining homeostasis and effective interaction with the environment, shaped by genetic and environmental factors throughout neurodevelopment and maturity. While genetic components dictate initial neurodevelopment stages, epigenetics-specifically neuroepigenetics-modulates gene expression in response to environmental influences, allowing for brain adaptability and plasticity. This interplay is particularly evident in neuropathologies like Rett syndrome and CDKL5 deficiency syndrome, where disruptions in neuroepigenetic processes underline significant cognitive and motor impairments. The environmental enrichment paradigm, introduced by Donald Hebb in the late 1940s, demonstrates how enriching stimuli-such as complex sensory, social, and cognitive inputs-affect brain structure and function. Despite methodological variability, evidence reveals that enriched environments catalyze beneficial changes in behavior and neuroanatomy, including increased synaptic plasticity, enhanced motor coordination, and improved cognitive performance in rodent models. Additionally, environmental enrichment induces epigenetic modifications that facilitate these outcomes, highlighting the necessity of understanding the mechanisms driving gene expression changes within the context of enriched experiences. Ultimately, this manifold relationship between environment, neuroepigenetic modulation, and brain function highlights the brain's capacity for change, reinforcing the importance of considering environmental factors in studies of neurodevelopment and therapy for neurological disorders.</p>\",\"PeriodicalId\":21991,\"journal\":{\"name\":\"Sub-cellular biochemistry\",\"volume\":\"108 \",\"pages\":\"217-230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sub-cellular biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-75980-2_6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sub-cellular biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-75980-2_6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

大脑在维持体内平衡和与环境的有效相互作用中起着至关重要的作用,在整个神经发育和成熟过程中受到遗传和环境因素的影响。虽然遗传成分决定了神经发育的初始阶段,但表观遗传学-特别是神经表观遗传学-调节基因表达以响应环境影响,从而允许大脑的适应性和可塑性。这种相互作用在Rett综合征和CDKL5缺乏症等神经病理学中尤为明显,在这些疾病中,神经表观遗传过程的中断突出了严重的认知和运动障碍。Donald Hebb在20世纪40年代末提出的环境丰富范式,展示了丰富的刺激——如复杂的感觉、社会和认知输入——如何影响大脑结构和功能。尽管方法上存在差异,但有证据表明,在啮齿类动物模型中,丰富的环境催化了行为和神经解剖学的有益变化,包括增加突触可塑性、增强运动协调和改善认知表现。此外,环境富集诱导表观遗传修饰促进了这些结果,强调了在丰富经验背景下理解驱动基因表达变化机制的必要性。最终,这种环境、神经表观遗传调节和大脑功能之间的多重关系突出了大脑的变化能力,加强了在神经发育研究和神经疾病治疗中考虑环境因素的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmental Enrichment and Epigenetic Changes in the Brain: From the Outside to the Deep Inside.

The brain plays a vital role in maintaining homeostasis and effective interaction with the environment, shaped by genetic and environmental factors throughout neurodevelopment and maturity. While genetic components dictate initial neurodevelopment stages, epigenetics-specifically neuroepigenetics-modulates gene expression in response to environmental influences, allowing for brain adaptability and plasticity. This interplay is particularly evident in neuropathologies like Rett syndrome and CDKL5 deficiency syndrome, where disruptions in neuroepigenetic processes underline significant cognitive and motor impairments. The environmental enrichment paradigm, introduced by Donald Hebb in the late 1940s, demonstrates how enriching stimuli-such as complex sensory, social, and cognitive inputs-affect brain structure and function. Despite methodological variability, evidence reveals that enriched environments catalyze beneficial changes in behavior and neuroanatomy, including increased synaptic plasticity, enhanced motor coordination, and improved cognitive performance in rodent models. Additionally, environmental enrichment induces epigenetic modifications that facilitate these outcomes, highlighting the necessity of understanding the mechanisms driving gene expression changes within the context of enriched experiences. Ultimately, this manifold relationship between environment, neuroepigenetic modulation, and brain function highlights the brain's capacity for change, reinforcing the importance of considering environmental factors in studies of neurodevelopment and therapy for neurological disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sub-cellular biochemistry
Sub-cellular biochemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.90
自引率
0.00%
发文量
33
期刊介绍: The book series SUBCELLULAR BIOCHEMISTRY is a renowned and well recognized forum for disseminating advances of emerging topics in Cell Biology and related subjects. All volumes are edited by established scientists and the individual chapters are written by experts on the relevant topic. The individual chapters of each volume are fully citable and indexed in Medline/Pubmed to ensure maximum visibility of the work.
期刊最新文献
Basic Epigenetic Mechanisms. Environmental Enrichment and Epigenetic Changes in the Brain: From the Outside to the Deep Inside. Epigenetic Control in Schizophrenia. Epigenetics in Learning and Memory. Epigenetics in Neurodegenerative Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1