{"title":"重击肝癌:通过SLAMF7靶向免疫抑制巨噬细胞重编程肿瘤微环境。","authors":"Alix Bruneau, Linda Hammerich","doi":"10.21037/tcr-24-876","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide due to limited treatment options. The tumor microenvironment (TME), which is usually immunosuppressive in HCC, appears to be a decisive factor for response to immunotherapy and strategies aimed at inducing a more inflamed TME hold promise to overcome resistance to immunotherapy. Within the TME, the interplay of various cell types determines whether immunotherapy is successful. Liver macrophages, in particular tumor associated macrophages (TAMs), are known to play a crucial role in tumor progression and represent potential future therapeutic targets. The presence of C-C motif chemokine receptor 2 (CCR2) expressing macrophages is known to be associated with pathogenic angiogenesis and bad prognosis for HCC patients. A recent study published in Cancer Research describes how immunosuppressive macrophages in the TME can be repolarized through targeting Signaling Lymphocyte Activation Molecule Family member 7 (SLAMF7)-regulated CC-chemokine ligand 2 (CCL2) signaling, which sensitizes HCC tumors to immunotherapy in a mouse model. This mini-review gives a brief overview about the current knowledge on SLAMF7 in the context of anti-cancer immunity and how the recent findings could be integrated into new therapeutic strategies for HCC.</p>","PeriodicalId":23216,"journal":{"name":"Translational cancer research","volume":"13 12","pages":"6995-7001"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730195/pdf/","citationCount":"0","resultStr":"{\"title\":\"Slamming hepatocellular carcinoma: targeting immunosuppressive macrophages via SLAMF7 reprograms the tumor microenvironment.\",\"authors\":\"Alix Bruneau, Linda Hammerich\",\"doi\":\"10.21037/tcr-24-876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide due to limited treatment options. The tumor microenvironment (TME), which is usually immunosuppressive in HCC, appears to be a decisive factor for response to immunotherapy and strategies aimed at inducing a more inflamed TME hold promise to overcome resistance to immunotherapy. Within the TME, the interplay of various cell types determines whether immunotherapy is successful. Liver macrophages, in particular tumor associated macrophages (TAMs), are known to play a crucial role in tumor progression and represent potential future therapeutic targets. The presence of C-C motif chemokine receptor 2 (CCR2) expressing macrophages is known to be associated with pathogenic angiogenesis and bad prognosis for HCC patients. A recent study published in Cancer Research describes how immunosuppressive macrophages in the TME can be repolarized through targeting Signaling Lymphocyte Activation Molecule Family member 7 (SLAMF7)-regulated CC-chemokine ligand 2 (CCL2) signaling, which sensitizes HCC tumors to immunotherapy in a mouse model. This mini-review gives a brief overview about the current knowledge on SLAMF7 in the context of anti-cancer immunity and how the recent findings could be integrated into new therapeutic strategies for HCC.</p>\",\"PeriodicalId\":23216,\"journal\":{\"name\":\"Translational cancer research\",\"volume\":\"13 12\",\"pages\":\"6995-7001\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730195/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.21037/tcr-24-876\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21037/tcr-24-876","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
Slamming hepatocellular carcinoma: targeting immunosuppressive macrophages via SLAMF7 reprograms the tumor microenvironment.
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide due to limited treatment options. The tumor microenvironment (TME), which is usually immunosuppressive in HCC, appears to be a decisive factor for response to immunotherapy and strategies aimed at inducing a more inflamed TME hold promise to overcome resistance to immunotherapy. Within the TME, the interplay of various cell types determines whether immunotherapy is successful. Liver macrophages, in particular tumor associated macrophages (TAMs), are known to play a crucial role in tumor progression and represent potential future therapeutic targets. The presence of C-C motif chemokine receptor 2 (CCR2) expressing macrophages is known to be associated with pathogenic angiogenesis and bad prognosis for HCC patients. A recent study published in Cancer Research describes how immunosuppressive macrophages in the TME can be repolarized through targeting Signaling Lymphocyte Activation Molecule Family member 7 (SLAMF7)-regulated CC-chemokine ligand 2 (CCL2) signaling, which sensitizes HCC tumors to immunotherapy in a mouse model. This mini-review gives a brief overview about the current knowledge on SLAMF7 in the context of anti-cancer immunity and how the recent findings could be integrated into new therapeutic strategies for HCC.
期刊介绍:
Translational Cancer Research (Transl Cancer Res TCR; Print ISSN: 2218-676X; Online ISSN 2219-6803; http://tcr.amegroups.com/) is an Open Access, peer-reviewed journal, indexed in Science Citation Index Expanded (SCIE). TCR publishes laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer; results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of cancer patients. The focus of TCR is original, peer-reviewed, science-based research that successfully advances clinical medicine toward the goal of improving patients'' quality of life. The editors and an international advisory group of scientists and clinician-scientists as well as other experts will hold TCR articles to the high-quality standards. We accept Original Articles as well as Review Articles, Editorials and Brief Articles.