{"title":"动态OCT成像量化调节过程中睫状肌的前向心运动。","authors":"Iulen Cabeza-Gil, Marco Ruggeri, Fabrice Manns","doi":"10.1167/tvst.14.1.17","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Although the lens undoubtedly plays a major role in presbyopia, altered lens function could be in part secondary to age-related changes of the ciliary muscle. Ciliary muscle changes with accommodation have been quantified using optical coherence tomography, but so far these studies have been limited to quantifying changes in ciliary muscle thickness, mostly at static accommodative states. Quantifying ciliary muscle thickness changes does not effectively capture the dynamic anterior-centripetal movement of the ciliary muscle during accommodation. To address this issue, we present a method to quantify the movement of the ciliary muscle during accommodation using trans-scleral optical coherence tomography images obtained dynamically.</p><p><strong>Methods: </strong>An image processing framework including distortion correction, geometric transformation, and Procrustes analysis, was used to quantify the anterior-centripetal movement of the ciliary muscle apex and centroid during accommodation. The method was applied in a preliminary study to quantify ciliary muscle displacement and its relation to lens thickness change with accommodation on two young adults and two prepresbyopes.</p><p><strong>Results: </strong>The magnitude and the direction relative to the pupil plane of the apex/centroid displacement in response to a two diopters (2D) stimulus were 0.16/0.20 mm at 11.3°/30.5° and 0.26/0.34 mm at 6.6°/33.2° for the young adults and 0.20/0.20 mm at 29.7°/40.6° and 0.24/0.40 mm at 33.0°/31.7° for the prepresbyopes, respectively.</p><p><strong>Conclusions: </strong>This study demonstrates the feasibility of quantifying dynamic anterior-centripetal movement of the ciliary muscle during accommodation using optical coherence tomography. The method better captures the functional response of the muscle than the quantification of thickness changes.</p><p><strong>Translational relevance: </strong>We provide a method that holds potential to better understand the age-related changes of the ciliary muscle on presbyopia.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"14 1","pages":"17"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745204/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantification of the Anterior-Centripetal Movement of the Ciliary Muscle During Accommodation Using Dynamic OCT Imaging.\",\"authors\":\"Iulen Cabeza-Gil, Marco Ruggeri, Fabrice Manns\",\"doi\":\"10.1167/tvst.14.1.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Although the lens undoubtedly plays a major role in presbyopia, altered lens function could be in part secondary to age-related changes of the ciliary muscle. Ciliary muscle changes with accommodation have been quantified using optical coherence tomography, but so far these studies have been limited to quantifying changes in ciliary muscle thickness, mostly at static accommodative states. Quantifying ciliary muscle thickness changes does not effectively capture the dynamic anterior-centripetal movement of the ciliary muscle during accommodation. To address this issue, we present a method to quantify the movement of the ciliary muscle during accommodation using trans-scleral optical coherence tomography images obtained dynamically.</p><p><strong>Methods: </strong>An image processing framework including distortion correction, geometric transformation, and Procrustes analysis, was used to quantify the anterior-centripetal movement of the ciliary muscle apex and centroid during accommodation. The method was applied in a preliminary study to quantify ciliary muscle displacement and its relation to lens thickness change with accommodation on two young adults and two prepresbyopes.</p><p><strong>Results: </strong>The magnitude and the direction relative to the pupil plane of the apex/centroid displacement in response to a two diopters (2D) stimulus were 0.16/0.20 mm at 11.3°/30.5° and 0.26/0.34 mm at 6.6°/33.2° for the young adults and 0.20/0.20 mm at 29.7°/40.6° and 0.24/0.40 mm at 33.0°/31.7° for the prepresbyopes, respectively.</p><p><strong>Conclusions: </strong>This study demonstrates the feasibility of quantifying dynamic anterior-centripetal movement of the ciliary muscle during accommodation using optical coherence tomography. The method better captures the functional response of the muscle than the quantification of thickness changes.</p><p><strong>Translational relevance: </strong>We provide a method that holds potential to better understand the age-related changes of the ciliary muscle on presbyopia.</p>\",\"PeriodicalId\":23322,\"journal\":{\"name\":\"Translational Vision Science & Technology\",\"volume\":\"14 1\",\"pages\":\"17\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11745204/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Vision Science & Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/tvst.14.1.17\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.14.1.17","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Quantification of the Anterior-Centripetal Movement of the Ciliary Muscle During Accommodation Using Dynamic OCT Imaging.
Purpose: Although the lens undoubtedly plays a major role in presbyopia, altered lens function could be in part secondary to age-related changes of the ciliary muscle. Ciliary muscle changes with accommodation have been quantified using optical coherence tomography, but so far these studies have been limited to quantifying changes in ciliary muscle thickness, mostly at static accommodative states. Quantifying ciliary muscle thickness changes does not effectively capture the dynamic anterior-centripetal movement of the ciliary muscle during accommodation. To address this issue, we present a method to quantify the movement of the ciliary muscle during accommodation using trans-scleral optical coherence tomography images obtained dynamically.
Methods: An image processing framework including distortion correction, geometric transformation, and Procrustes analysis, was used to quantify the anterior-centripetal movement of the ciliary muscle apex and centroid during accommodation. The method was applied in a preliminary study to quantify ciliary muscle displacement and its relation to lens thickness change with accommodation on two young adults and two prepresbyopes.
Results: The magnitude and the direction relative to the pupil plane of the apex/centroid displacement in response to a two diopters (2D) stimulus were 0.16/0.20 mm at 11.3°/30.5° and 0.26/0.34 mm at 6.6°/33.2° for the young adults and 0.20/0.20 mm at 29.7°/40.6° and 0.24/0.40 mm at 33.0°/31.7° for the prepresbyopes, respectively.
Conclusions: This study demonstrates the feasibility of quantifying dynamic anterior-centripetal movement of the ciliary muscle during accommodation using optical coherence tomography. The method better captures the functional response of the muscle than the quantification of thickness changes.
Translational relevance: We provide a method that holds potential to better understand the age-related changes of the ciliary muscle on presbyopia.
期刊介绍:
Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO.
The journal covers a broad spectrum of work, including but not limited to:
Applications of stem cell technology for regenerative medicine,
Development of new animal models of human diseases,
Tissue bioengineering,
Chemical engineering to improve virus-based gene delivery,
Nanotechnology for drug delivery,
Design and synthesis of artificial extracellular matrices,
Development of a true microsurgical operating environment,
Refining data analysis algorithms to improve in vivo imaging technology,
Results of Phase 1 clinical trials,
Reverse translational ("bedside to bench") research.
TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.