Alicia M Key, Eric J Earley, Vassilis L Tzounakas, Alkmini T Anastasiadi, Travis Nemkov, Daniel Stephenson, Monika Dzieciatkowska, Julie A Reisz, Gregory R Keele, Xutao Deng, Mars Stone, Steve Kleinman, Kirk C Hansen, Philip J Norris, Michael P Busch, Nareg H Roubinian, Grier P Page, Angelo D'Alessandro
{"title":"红细胞尿酸水平与体外和输血后溶血有关,其功能与供体性别、SLC2A9和ABCG2的群体和遗传多态性有关。","authors":"Alicia M Key, Eric J Earley, Vassilis L Tzounakas, Alkmini T Anastasiadi, Travis Nemkov, Daniel Stephenson, Monika Dzieciatkowska, Julie A Reisz, Gregory R Keele, Xutao Deng, Mars Stone, Steve Kleinman, Kirk C Hansen, Philip J Norris, Michael P Busch, Nareg H Roubinian, Grier P Page, Angelo D'Alessandro","doi":"10.1111/trf.18140","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Storage of packed red blood cells (RBCs) for transfusion leads to biochemical and morphological changes, increasing hemolysis risk. Urate levels in blood bags at donation contribute to the molecular heterogeneity and hemolytic propensity of stored RBCs. However, studies to date have been underpowered to investigate at scale the contribution of donor demographics and genetics to the heterogeneity in urate levels across donations.</p><p><strong>Study design and methods: </strong>Urate levels were measured in 13,091 RBC units from the REDS study. Characteristics tested included hemolysis parameters (spontaneous, osmotic, oxidative) at storage end and post-transfusion hemoglobin (Hb) increments in recipients. Donor demographics, urate levels, and genetic variants were analyzed for associations with these outcomes.</p><p><strong>Results: </strong>Elevated urate levels were linked to male sex, older age, high BMI, and Asian descent. Units with high urate levels exhibited increased spontaneous and osmotic hemolysis, while oxidative hemolysis was unaffected. Genetic variants in SLC2A9 (V282I) and ABCG2 (Q141K) were strongly associated with elevated urate, particularly in Asian donors. Post-transfusion analyses revealed that units from female donors carrying these variants were associated with reduced Hb increments, with up to a 31% reduction in efficacy. This effect was not observed in male donors.</p><p><strong>Discussion: </strong>RBC urate levels and genetic traits significantly impact storage quality and transfusion outcomes. These findings highlight the importance of donor molecular characteristics for optimizing transfusion strategies. Moreover, genetic and metabolic insights may inform donor recruitment efforts, providing health feedback to volunteers while ensuring effective transfusion products.</p>","PeriodicalId":23266,"journal":{"name":"Transfusion","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Red blood cell urate levels are linked to hemolysis in vitro and post-transfusion as a function of donor sex, population and genetic polymorphisms in SLC2A9 and ABCG2.\",\"authors\":\"Alicia M Key, Eric J Earley, Vassilis L Tzounakas, Alkmini T Anastasiadi, Travis Nemkov, Daniel Stephenson, Monika Dzieciatkowska, Julie A Reisz, Gregory R Keele, Xutao Deng, Mars Stone, Steve Kleinman, Kirk C Hansen, Philip J Norris, Michael P Busch, Nareg H Roubinian, Grier P Page, Angelo D'Alessandro\",\"doi\":\"10.1111/trf.18140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Storage of packed red blood cells (RBCs) for transfusion leads to biochemical and morphological changes, increasing hemolysis risk. Urate levels in blood bags at donation contribute to the molecular heterogeneity and hemolytic propensity of stored RBCs. However, studies to date have been underpowered to investigate at scale the contribution of donor demographics and genetics to the heterogeneity in urate levels across donations.</p><p><strong>Study design and methods: </strong>Urate levels were measured in 13,091 RBC units from the REDS study. Characteristics tested included hemolysis parameters (spontaneous, osmotic, oxidative) at storage end and post-transfusion hemoglobin (Hb) increments in recipients. Donor demographics, urate levels, and genetic variants were analyzed for associations with these outcomes.</p><p><strong>Results: </strong>Elevated urate levels were linked to male sex, older age, high BMI, and Asian descent. Units with high urate levels exhibited increased spontaneous and osmotic hemolysis, while oxidative hemolysis was unaffected. Genetic variants in SLC2A9 (V282I) and ABCG2 (Q141K) were strongly associated with elevated urate, particularly in Asian donors. Post-transfusion analyses revealed that units from female donors carrying these variants were associated with reduced Hb increments, with up to a 31% reduction in efficacy. This effect was not observed in male donors.</p><p><strong>Discussion: </strong>RBC urate levels and genetic traits significantly impact storage quality and transfusion outcomes. These findings highlight the importance of donor molecular characteristics for optimizing transfusion strategies. Moreover, genetic and metabolic insights may inform donor recruitment efforts, providing health feedback to volunteers while ensuring effective transfusion products.</p>\",\"PeriodicalId\":23266,\"journal\":{\"name\":\"Transfusion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transfusion\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/trf.18140\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transfusion","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/trf.18140","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Red blood cell urate levels are linked to hemolysis in vitro and post-transfusion as a function of donor sex, population and genetic polymorphisms in SLC2A9 and ABCG2.
Background: Storage of packed red blood cells (RBCs) for transfusion leads to biochemical and morphological changes, increasing hemolysis risk. Urate levels in blood bags at donation contribute to the molecular heterogeneity and hemolytic propensity of stored RBCs. However, studies to date have been underpowered to investigate at scale the contribution of donor demographics and genetics to the heterogeneity in urate levels across donations.
Study design and methods: Urate levels were measured in 13,091 RBC units from the REDS study. Characteristics tested included hemolysis parameters (spontaneous, osmotic, oxidative) at storage end and post-transfusion hemoglobin (Hb) increments in recipients. Donor demographics, urate levels, and genetic variants were analyzed for associations with these outcomes.
Results: Elevated urate levels were linked to male sex, older age, high BMI, and Asian descent. Units with high urate levels exhibited increased spontaneous and osmotic hemolysis, while oxidative hemolysis was unaffected. Genetic variants in SLC2A9 (V282I) and ABCG2 (Q141K) were strongly associated with elevated urate, particularly in Asian donors. Post-transfusion analyses revealed that units from female donors carrying these variants were associated with reduced Hb increments, with up to a 31% reduction in efficacy. This effect was not observed in male donors.
Discussion: RBC urate levels and genetic traits significantly impact storage quality and transfusion outcomes. These findings highlight the importance of donor molecular characteristics for optimizing transfusion strategies. Moreover, genetic and metabolic insights may inform donor recruitment efforts, providing health feedback to volunteers while ensuring effective transfusion products.
期刊介绍:
TRANSFUSION is the foremost publication in the world for new information regarding transfusion medicine. Written by and for members of AABB and other health-care workers, TRANSFUSION reports on the latest technical advances, discusses opposing viewpoints regarding controversial issues, and presents key conference proceedings. In addition to blood banking and transfusion medicine topics, TRANSFUSION presents submissions concerning patient blood management, tissue transplantation and hematopoietic, cellular, and gene therapies.