{"title":"利用EUCLID发现非关联压敏塑性模型。","authors":"Haotian Xu, Moritz Flaschel, Laura De Lorenzis","doi":"10.1186/s40323-024-00281-3","DOIUrl":null,"url":null,"abstract":"<p><p>We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations. In contrast to traditional parameter identification methods, EUCLID is equipped with a sparsity promoting regularization to restrain the number of model parameters (and thus modeling features) to the minimum needed to accurately interpret the data, thus achieving a compromise between model simplicity and accuracy. The convexity of the learned yield surface is guaranteed by a set of constraints in the inverse optimization problem. We demonstrate the proposed approach in multiple numerical experiments with noisy data, and show the ability of EUCLID to accurately select a suitable material model from the starting library.</p>","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"12 1","pages":"1"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742892/pdf/","citationCount":"0","resultStr":"{\"title\":\"Discovering non-associated pressure-sensitive plasticity models with EUCLID.\",\"authors\":\"Haotian Xu, Moritz Flaschel, Laura De Lorenzis\",\"doi\":\"10.1186/s40323-024-00281-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations. In contrast to traditional parameter identification methods, EUCLID is equipped with a sparsity promoting regularization to restrain the number of model parameters (and thus modeling features) to the minimum needed to accurately interpret the data, thus achieving a compromise between model simplicity and accuracy. The convexity of the learned yield surface is guaranteed by a set of constraints in the inverse optimization problem. We demonstrate the proposed approach in multiple numerical experiments with noisy data, and show the ability of EUCLID to accurately select a suitable material model from the starting library.</p>\",\"PeriodicalId\":37424,\"journal\":{\"name\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"volume\":\"12 1\",\"pages\":\"1\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742892/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Modeling and Simulation in Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40323-024-00281-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-024-00281-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Discovering non-associated pressure-sensitive plasticity models with EUCLID.
We extend (EUCLID Efficient Unsupervised Constitutive Law Identification and Discovery)-a data-driven framework for automated material model discovery-to pressure-sensitive plasticity models, encompassing arbitrarily shaped yield surfaces with convexity constraints and non-associated flow rules. The method only requires full-field displacement and boundary force data from one single experiment and delivers constitutive laws as interpretable mathematical expressions. We construct a material model library for pressure-sensitive plasticity models with non-associated flow rules in four steps: (1) a Fourier series describes an arbitrary yield surface shape in the deviatoric stress plane; (2) a pressure-sensitive term in the yield function defines the shape of the shear failure surface and determines plastic deformation under tension; (3) a compression cap term determines plastic deformation under compression; (4) a non-associated flow rule may be adopted to avoid the excessive dilatancy induced by plastic deformations. In contrast to traditional parameter identification methods, EUCLID is equipped with a sparsity promoting regularization to restrain the number of model parameters (and thus modeling features) to the minimum needed to accurately interpret the data, thus achieving a compromise between model simplicity and accuracy. The convexity of the learned yield surface is guaranteed by a set of constraints in the inverse optimization problem. We demonstrate the proposed approach in multiple numerical experiments with noisy data, and show the ability of EUCLID to accurately select a suitable material model from the starting library.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.