{"title":"虹膜:下一代数字病理渲染引擎。","authors":"Ryan Erik Landvater, Ulysses Balis","doi":"10.1016/j.jpi.2024.100414","DOIUrl":null,"url":null,"abstract":"<div><div>Digital pathology is a tool of rapidly evolving importance within the discipline of pathology. Whole slide imaging promises numerous advantages; however, adoption is limited by challenges in ease of use and speed of high-quality image rendering relative to the simplicity and visual quality of glass slides. Herein, we introduce Iris, a new high-performance digital pathology rendering system. Specifically, we outline and detail the performance metrics of Iris Core, the core rendering engine technology. Iris Core comprises machine code modules written from the ground up in C++ and using Vulkan, a low-level and low-overhead cross-platform graphical processing unit application program interface, and our novel rapid tile buffering algorithms. We provide a detailed explanation of Iris Core's system architecture, including the stateless isolation of core processes, interprocess communication paradigms, and explicit synchronization paradigms that provide powerful control over the graphical processing unit. Iris Core achieves slide rendering at the sustained maximum frame rate on all tested platforms (120 FPS) and buffers an entire new slide field of view, without overlapping pixels, in 10 ms with enhanced detail in 30 ms. Further, it is able to buffer and compute high-fidelity reduction-enhancements for viewing low-power cytology with increased visual quality at a rate of 100–160 μs per slide tile, and with a cumulative median buffering rate of 1.36 GB of decompressed image data per second. This buffering rate allows for an entirely new field of view to be fully buffered and rendered in less than a single monitor refresh on a standard display, and high detail features within 2–3 monitor refresh frames. These metrics far exceed previously published specifications, beyond an order of magnitude in some contexts. The system shows no slowing with high use loads, but rather increases performance due to graphical processing unit cache control mechanisms and is “future-proof” due to near unlimited parallel scalability.</div></div>","PeriodicalId":37769,"journal":{"name":"Journal of Pathology Informatics","volume":"16 ","pages":"Article 100414"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742306/pdf/","citationCount":"0","resultStr":"{\"title\":\"Iris: A Next Generation Digital Pathology Rendering Engine\",\"authors\":\"Ryan Erik Landvater, Ulysses Balis\",\"doi\":\"10.1016/j.jpi.2024.100414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Digital pathology is a tool of rapidly evolving importance within the discipline of pathology. Whole slide imaging promises numerous advantages; however, adoption is limited by challenges in ease of use and speed of high-quality image rendering relative to the simplicity and visual quality of glass slides. Herein, we introduce Iris, a new high-performance digital pathology rendering system. Specifically, we outline and detail the performance metrics of Iris Core, the core rendering engine technology. Iris Core comprises machine code modules written from the ground up in C++ and using Vulkan, a low-level and low-overhead cross-platform graphical processing unit application program interface, and our novel rapid tile buffering algorithms. We provide a detailed explanation of Iris Core's system architecture, including the stateless isolation of core processes, interprocess communication paradigms, and explicit synchronization paradigms that provide powerful control over the graphical processing unit. Iris Core achieves slide rendering at the sustained maximum frame rate on all tested platforms (120 FPS) and buffers an entire new slide field of view, without overlapping pixels, in 10 ms with enhanced detail in 30 ms. Further, it is able to buffer and compute high-fidelity reduction-enhancements for viewing low-power cytology with increased visual quality at a rate of 100–160 μs per slide tile, and with a cumulative median buffering rate of 1.36 GB of decompressed image data per second. This buffering rate allows for an entirely new field of view to be fully buffered and rendered in less than a single monitor refresh on a standard display, and high detail features within 2–3 monitor refresh frames. These metrics far exceed previously published specifications, beyond an order of magnitude in some contexts. The system shows no slowing with high use loads, but rather increases performance due to graphical processing unit cache control mechanisms and is “future-proof” due to near unlimited parallel scalability.</div></div>\",\"PeriodicalId\":37769,\"journal\":{\"name\":\"Journal of Pathology Informatics\",\"volume\":\"16 \",\"pages\":\"Article 100414\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742306/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pathology Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2153353924000531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pathology Informatics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2153353924000531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Iris: A Next Generation Digital Pathology Rendering Engine
Digital pathology is a tool of rapidly evolving importance within the discipline of pathology. Whole slide imaging promises numerous advantages; however, adoption is limited by challenges in ease of use and speed of high-quality image rendering relative to the simplicity and visual quality of glass slides. Herein, we introduce Iris, a new high-performance digital pathology rendering system. Specifically, we outline and detail the performance metrics of Iris Core, the core rendering engine technology. Iris Core comprises machine code modules written from the ground up in C++ and using Vulkan, a low-level and low-overhead cross-platform graphical processing unit application program interface, and our novel rapid tile buffering algorithms. We provide a detailed explanation of Iris Core's system architecture, including the stateless isolation of core processes, interprocess communication paradigms, and explicit synchronization paradigms that provide powerful control over the graphical processing unit. Iris Core achieves slide rendering at the sustained maximum frame rate on all tested platforms (120 FPS) and buffers an entire new slide field of view, without overlapping pixels, in 10 ms with enhanced detail in 30 ms. Further, it is able to buffer and compute high-fidelity reduction-enhancements for viewing low-power cytology with increased visual quality at a rate of 100–160 μs per slide tile, and with a cumulative median buffering rate of 1.36 GB of decompressed image data per second. This buffering rate allows for an entirely new field of view to be fully buffered and rendered in less than a single monitor refresh on a standard display, and high detail features within 2–3 monitor refresh frames. These metrics far exceed previously published specifications, beyond an order of magnitude in some contexts. The system shows no slowing with high use loads, but rather increases performance due to graphical processing unit cache control mechanisms and is “future-proof” due to near unlimited parallel scalability.
期刊介绍:
The Journal of Pathology Informatics (JPI) is an open access peer-reviewed journal dedicated to the advancement of pathology informatics. This is the official journal of the Association for Pathology Informatics (API). The journal aims to publish broadly about pathology informatics and freely disseminate all articles worldwide. This journal is of interest to pathologists, informaticians, academics, researchers, health IT specialists, information officers, IT staff, vendors, and anyone with an interest in informatics. We encourage submissions from anyone with an interest in the field of pathology informatics. We publish all types of papers related to pathology informatics including original research articles, technical notes, reviews, viewpoints, commentaries, editorials, symposia, meeting abstracts, book reviews, and correspondence to the editors. All submissions are subject to rigorous peer review by the well-regarded editorial board and by expert referees in appropriate specialties.