Ella Ziegler, Katarina L Matthes, Peter W Middelkamp, Verena J Schuenemann, Christian L Althaus, Frank Rühli, Kaspar Staub
{"title":"1918-1920年瑞士苏黎世流感大流行的疾病和死亡率负担回顾性建模","authors":"Ella Ziegler, Katarina L Matthes, Peter W Middelkamp, Verena J Schuenemann, Christian L Althaus, Frank Rühli, Kaspar Staub","doi":"10.1016/j.epidem.2025.100813","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Our study aims to enhance future pandemic preparedness by integrating lessons from historical pandemics, focusing on the multidimensional analysis of past outbreaks. It addresses the gap in existing modelling studies by combining various pandemic parameters in a comprehensive setting. Using Zurich as a case study, we seek a deeper understanding of pandemic dynamics to inform future scenarios.</p><p><strong>Data and methods: </strong>We use newly digitized weekly aggregated epidemic/pandemic time series (incidence, hospitalisations, mortality and sickness absences from work) to retrospectively model the 1918-1920 pandemic in Zurich and investigate how different parameters correspond, how transmissibility changed during the different waves, and how public health interventions were associated with changes in these pandemic parameters.</p><p><strong>Results: </strong>In general, the various time series show a good temporal correspondence, but differences in their expression can also be observed. The first wave in the summer of 1918 did lead to illness, absence from work and hospitalisations, but to a lesser extent to increased mortality. In contrast, the second, longest and strongest wave in the autumn/winter of 1918 also led to greatly increased (excess) mortality in addition to the burden of illness. The later wave in the first months of 1920 was again associated with an increase in all pandemic parameters. Furthermore, we can see that public health measures such as bans on gatherings and school closures were associated with a decrease in the course of the pandemic, while the lifting or non-compliance with these measures was associated with an increase of reported cases.</p><p><strong>Discussion: </strong>Our study emphasizes the need to analyse a pandemic's disease burden comprehensively, beyond mortality. It highlights the importance of considering incidence, hospitalizations, and work absences as distinct but related aspects of disease impact. This approach reveals the nuanced dynamics of a pandemic, especially crucial during multi-wave outbreaks.</p>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"50 ","pages":"100813"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retrospective modelling of the disease and mortality burden of the 1918-1920 influenza pandemic in Zurich, Switzerland.\",\"authors\":\"Ella Ziegler, Katarina L Matthes, Peter W Middelkamp, Verena J Schuenemann, Christian L Althaus, Frank Rühli, Kaspar Staub\",\"doi\":\"10.1016/j.epidem.2025.100813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Our study aims to enhance future pandemic preparedness by integrating lessons from historical pandemics, focusing on the multidimensional analysis of past outbreaks. It addresses the gap in existing modelling studies by combining various pandemic parameters in a comprehensive setting. Using Zurich as a case study, we seek a deeper understanding of pandemic dynamics to inform future scenarios.</p><p><strong>Data and methods: </strong>We use newly digitized weekly aggregated epidemic/pandemic time series (incidence, hospitalisations, mortality and sickness absences from work) to retrospectively model the 1918-1920 pandemic in Zurich and investigate how different parameters correspond, how transmissibility changed during the different waves, and how public health interventions were associated with changes in these pandemic parameters.</p><p><strong>Results: </strong>In general, the various time series show a good temporal correspondence, but differences in their expression can also be observed. The first wave in the summer of 1918 did lead to illness, absence from work and hospitalisations, but to a lesser extent to increased mortality. In contrast, the second, longest and strongest wave in the autumn/winter of 1918 also led to greatly increased (excess) mortality in addition to the burden of illness. The later wave in the first months of 1920 was again associated with an increase in all pandemic parameters. Furthermore, we can see that public health measures such as bans on gatherings and school closures were associated with a decrease in the course of the pandemic, while the lifting or non-compliance with these measures was associated with an increase of reported cases.</p><p><strong>Discussion: </strong>Our study emphasizes the need to analyse a pandemic's disease burden comprehensively, beyond mortality. It highlights the importance of considering incidence, hospitalizations, and work absences as distinct but related aspects of disease impact. This approach reveals the nuanced dynamics of a pandemic, especially crucial during multi-wave outbreaks.</p>\",\"PeriodicalId\":49206,\"journal\":{\"name\":\"Epidemics\",\"volume\":\"50 \",\"pages\":\"100813\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.epidem.2025.100813\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.epidem.2025.100813","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Retrospective modelling of the disease and mortality burden of the 1918-1920 influenza pandemic in Zurich, Switzerland.
Background: Our study aims to enhance future pandemic preparedness by integrating lessons from historical pandemics, focusing on the multidimensional analysis of past outbreaks. It addresses the gap in existing modelling studies by combining various pandemic parameters in a comprehensive setting. Using Zurich as a case study, we seek a deeper understanding of pandemic dynamics to inform future scenarios.
Data and methods: We use newly digitized weekly aggregated epidemic/pandemic time series (incidence, hospitalisations, mortality and sickness absences from work) to retrospectively model the 1918-1920 pandemic in Zurich and investigate how different parameters correspond, how transmissibility changed during the different waves, and how public health interventions were associated with changes in these pandemic parameters.
Results: In general, the various time series show a good temporal correspondence, but differences in their expression can also be observed. The first wave in the summer of 1918 did lead to illness, absence from work and hospitalisations, but to a lesser extent to increased mortality. In contrast, the second, longest and strongest wave in the autumn/winter of 1918 also led to greatly increased (excess) mortality in addition to the burden of illness. The later wave in the first months of 1920 was again associated with an increase in all pandemic parameters. Furthermore, we can see that public health measures such as bans on gatherings and school closures were associated with a decrease in the course of the pandemic, while the lifting or non-compliance with these measures was associated with an increase of reported cases.
Discussion: Our study emphasizes the need to analyse a pandemic's disease burden comprehensively, beyond mortality. It highlights the importance of considering incidence, hospitalizations, and work absences as distinct but related aspects of disease impact. This approach reveals the nuanced dynamics of a pandemic, especially crucial during multi-wave outbreaks.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.