肺氧中毒的恢复:一个新的(ESOT)模型。

IF 0.7 4区 医学 Q4 MARINE & FRESHWATER BIOLOGY Undersea and Hyperbaric Medicine Pub Date : 2024-04-01
Jan Risberg, Pieter-Jan van Ooij, Lyubisa Mátity
{"title":"肺氧中毒的恢复:一个新的(ESOT)模型。","authors":"Jan Risberg, Pieter-Jan van Ooij, Lyubisa Mátity","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Arieli has previously demonstrated that the exposure metric K could be used to predict pulmonary oxygen toxicity (POT) based on changes in Vital Capacity (VC). Our previous findings indicate that the Equivalent Surface Oxygen Time (ESOT) allows the estimation of POT without loss of accuracy compared to K. In this work, we have further investigated POT recovery. The K metric assumes that the recovery of POT is to be controlled by exposure to pO<sub>2</sub>. This results in a counterintuitively slow estimated recovery after exposure to low pO<sub>2</sub>. Similarly, K overestimates POT during intermittent hyperoxic exposures. We used results from previous studies to train the parameters of a new ESOT recovery model. The predicted recovery of ESOT (ESOT<sub>rec</sub>) after initial hyperoxic exposure (ESOT<sub>I</sub>) of duration t<sub>exp</sub> (h) and recovery time t (h) can be calculated as ESOT<sub>rec</sub>=ESOT<sub>I</sub> · e<sup>-f</sup> with f=0.439 · t · 0.906<sup>t</sup><sub>exp</sub>. For intermittent exposures, the function ESOT(n)=(n · a · ln(b · n+1)+c) · t<sub>exp</sub> · pO<sub>2</sub><sup>2.285</sup> will approximate POT (ESOT(n)) after n sessions of pO<sub>2</sub> (atm) for time t<sub>exp</sub> (min) in each cycle. Parameters a, b, and c are specific for each cycling pattern. These ESOT functions will better predict the development of POT during intermittent hyperoxic exposures as well as recovery after a broader range of continuous hyperoxic exposures than K. We recommend limiting hyperoxic exposures in surface-oriented diving to ESOT=660, 500, and 450 for a maximum of one, five, and seven consecutive days, respectively. A minimum of 48 hours of recovery should follow. These limits can probably be relaxed for intermittent exposures.</p>","PeriodicalId":49396,"journal":{"name":"Undersea and Hyperbaric Medicine","volume":"51 4","pages":"407-423"},"PeriodicalIF":0.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovery from pulmonary oxygen toxicity: a new (ESOT) model.\",\"authors\":\"Jan Risberg, Pieter-Jan van Ooij, Lyubisa Mátity\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arieli has previously demonstrated that the exposure metric K could be used to predict pulmonary oxygen toxicity (POT) based on changes in Vital Capacity (VC). Our previous findings indicate that the Equivalent Surface Oxygen Time (ESOT) allows the estimation of POT without loss of accuracy compared to K. In this work, we have further investigated POT recovery. The K metric assumes that the recovery of POT is to be controlled by exposure to pO<sub>2</sub>. This results in a counterintuitively slow estimated recovery after exposure to low pO<sub>2</sub>. Similarly, K overestimates POT during intermittent hyperoxic exposures. We used results from previous studies to train the parameters of a new ESOT recovery model. The predicted recovery of ESOT (ESOT<sub>rec</sub>) after initial hyperoxic exposure (ESOT<sub>I</sub>) of duration t<sub>exp</sub> (h) and recovery time t (h) can be calculated as ESOT<sub>rec</sub>=ESOT<sub>I</sub> · e<sup>-f</sup> with f=0.439 · t · 0.906<sup>t</sup><sub>exp</sub>. For intermittent exposures, the function ESOT(n)=(n · a · ln(b · n+1)+c) · t<sub>exp</sub> · pO<sub>2</sub><sup>2.285</sup> will approximate POT (ESOT(n)) after n sessions of pO<sub>2</sub> (atm) for time t<sub>exp</sub> (min) in each cycle. Parameters a, b, and c are specific for each cycling pattern. These ESOT functions will better predict the development of POT during intermittent hyperoxic exposures as well as recovery after a broader range of continuous hyperoxic exposures than K. We recommend limiting hyperoxic exposures in surface-oriented diving to ESOT=660, 500, and 450 for a maximum of one, five, and seven consecutive days, respectively. A minimum of 48 hours of recovery should follow. These limits can probably be relaxed for intermittent exposures.</p>\",\"PeriodicalId\":49396,\"journal\":{\"name\":\"Undersea and Hyperbaric Medicine\",\"volume\":\"51 4\",\"pages\":\"407-423\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Undersea and Hyperbaric Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Undersea and Hyperbaric Medicine","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Arieli先前已经证明,暴露度量K可用于基于肺活量(VC)变化预测肺氧毒性(POT)。我们之前的研究结果表明,与k相比,等效表面氧时间(ESOT)可以在不损失精度的情况下估计POT。在这项工作中,我们进一步研究了POT恢复。K指标假定POT的恢复是通过暴露于pO2来控制的。这导致暴露于低pO2后的估计恢复速度与直觉相反。同样,在间歇性高氧暴露时,K值高估了POT。我们使用之前研究的结果来训练新的ESOT采收率模型的参数。初始高氧暴露(ESOTI)持续时间texp (h)和恢复时间t (h)后ESOT (ESOTrec)的预测恢复可计算为ESOTrec=ESOTI·e-f,其中f=0.439·t·0.906texp。对于间歇性暴露,函数ESOT(n)=(n·a·ln(b·n+1)+c)·texp·pO22.285将在每个周期的n次pO2 (atm)时间文本(min)后近似于POT (ESOT(n))。参数a、b和c是特定于每个循环模式的。这些ESOT功能可以更好地预测间歇性高氧暴露期间POT的发展以及比k更大范围的持续高氧暴露后的恢复。我们建议将面向水面的潜水高氧暴露限制在ESOT=660, 500和450,最多连续1天,5天和7天。至少需要48小时的恢复时间。对于间歇性暴露,这些限制可能会放宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recovery from pulmonary oxygen toxicity: a new (ESOT) model.

Arieli has previously demonstrated that the exposure metric K could be used to predict pulmonary oxygen toxicity (POT) based on changes in Vital Capacity (VC). Our previous findings indicate that the Equivalent Surface Oxygen Time (ESOT) allows the estimation of POT without loss of accuracy compared to K. In this work, we have further investigated POT recovery. The K metric assumes that the recovery of POT is to be controlled by exposure to pO2. This results in a counterintuitively slow estimated recovery after exposure to low pO2. Similarly, K overestimates POT during intermittent hyperoxic exposures. We used results from previous studies to train the parameters of a new ESOT recovery model. The predicted recovery of ESOT (ESOTrec) after initial hyperoxic exposure (ESOTI) of duration texp (h) and recovery time t (h) can be calculated as ESOTrec=ESOTI · e-f with f=0.439 · t · 0.906texp. For intermittent exposures, the function ESOT(n)=(n · a · ln(b · n+1)+c) · texp · pO22.285 will approximate POT (ESOT(n)) after n sessions of pO2 (atm) for time texp (min) in each cycle. Parameters a, b, and c are specific for each cycling pattern. These ESOT functions will better predict the development of POT during intermittent hyperoxic exposures as well as recovery after a broader range of continuous hyperoxic exposures than K. We recommend limiting hyperoxic exposures in surface-oriented diving to ESOT=660, 500, and 450 for a maximum of one, five, and seven consecutive days, respectively. A minimum of 48 hours of recovery should follow. These limits can probably be relaxed for intermittent exposures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Undersea and Hyperbaric Medicine
Undersea and Hyperbaric Medicine 医学-海洋与淡水生物学
CiteScore
1.60
自引率
11.10%
发文量
37
审稿时长
>12 weeks
期刊介绍: Undersea and Hyperbaric Medicine Journal accepts manuscripts for publication that are related to the areas of diving research and physiology, hyperbaric medicine and oxygen therapy, submarine medicine, naval medicine and clinical research related to the above topics. To be considered for UHM scientific papers must deal with significant and new research in an area related to biological, physical and clinical phenomena related to the above environments.
期刊最新文献
A comparison of the treatment outcomes of cerebral gas embolism at 2.8 ATA in comparison with 6 ATA. Behavior and changes in rectal temperature in dogs and cats undergoing hyperbaric oxygen therapy: clinical data review. Does hyperbaric chamber attendance pose an asthma risk? Case report. Hyperbaric Oxygen Therapy for Sudden Sensorineural Hearing Loss - A Comorbidity Lens. Hyperbaric oxygen therapy for treatment of vascular occlusion after permanent dermal filler injection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1