脚部组织应力在慢性踝关节不稳定的立场阶段切割。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2025-01-15 DOI:10.1007/s11517-024-03276-9
Peimin Yu, Xuanzhen Cen, Liangliang Xiang, Alan Wang, Yaodong Gu, Justin Fernandez
{"title":"脚部组织应力在慢性踝关节不稳定的立场阶段切割。","authors":"Peimin Yu, Xuanzhen Cen, Liangliang Xiang, Alan Wang, Yaodong Gu, Justin Fernandez","doi":"10.1007/s11517-024-03276-9","DOIUrl":null,"url":null,"abstract":"<p><p>Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed. Computed Achilles tendon forces and measured regional plantar pressure were applied as boundary loading conditions for simulation. It was observed that the primary group differences in foot stress occurred during midstance and heel-off phases of the cutting task. Specifically, healthy individuals had significantly higher stress in the talus and soft tissue around the talus compared to CAI participants. In contrast, CAI participants had significantly higher stress in the cuneiforms and lateral forefoot bones during mid-stance and push-off phases. CAI participants appeared to adopt a protective strategy by transferring greater force to the lateral forefoot at the heel-off phase while lowering stress around the talus, which may be associated with pain relief near the ankle. These findings suggest further attention should be placed on internal stress in CAI at the push-off phase with implications for long-term foot adaptation.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foot tissue stress in chronic ankle instability during the stance phase of cutting.\",\"authors\":\"Peimin Yu, Xuanzhen Cen, Liangliang Xiang, Alan Wang, Yaodong Gu, Justin Fernandez\",\"doi\":\"10.1007/s11517-024-03276-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed. Computed Achilles tendon forces and measured regional plantar pressure were applied as boundary loading conditions for simulation. It was observed that the primary group differences in foot stress occurred during midstance and heel-off phases of the cutting task. Specifically, healthy individuals had significantly higher stress in the talus and soft tissue around the talus compared to CAI participants. In contrast, CAI participants had significantly higher stress in the cuneiforms and lateral forefoot bones during mid-stance and push-off phases. CAI participants appeared to adopt a protective strategy by transferring greater force to the lateral forefoot at the heel-off phase while lowering stress around the talus, which may be associated with pain relief near the ankle. These findings suggest further attention should be placed on internal stress in CAI at the push-off phase with implications for long-term foot adaptation.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03276-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03276-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

慢性踝关节不稳定(CAI)患者的下肢生物力学已被广泛研究,但很少有人对CAI患者的内足力学进行评估。本研究评估了在切割任务中,与未受伤和未受伤的参与者相比,CAI的骨和软组织应力。结合扫描的三维足部形状和自由变形,开发了66个个性化的有限元足部模型。计算的跟腱力和实测的区域足底压力作为边界加载条件进行模拟。观察到,足部应力的主要组差异发生在切割任务的中间和脚跟脱落阶段。具体而言,与CAI参与者相比,健康个体的距骨和距骨周围软组织的压力明显更高。相比之下,CAI参与者在站立和蹬离阶段的楔形骨和外侧前足骨的应力明显更高。CAI参与者似乎采取了一种保护策略,在脱跟阶段将更大的力转移到前脚外侧,同时降低距骨周围的压力,这可能与脚踝附近的疼痛缓解有关。这些发现表明,应该进一步关注推离阶段CAI的内应力,这对长期的足部适应有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Foot tissue stress in chronic ankle instability during the stance phase of cutting.

Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed. Computed Achilles tendon forces and measured regional plantar pressure were applied as boundary loading conditions for simulation. It was observed that the primary group differences in foot stress occurred during midstance and heel-off phases of the cutting task. Specifically, healthy individuals had significantly higher stress in the talus and soft tissue around the talus compared to CAI participants. In contrast, CAI participants had significantly higher stress in the cuneiforms and lateral forefoot bones during mid-stance and push-off phases. CAI participants appeared to adopt a protective strategy by transferring greater force to the lateral forefoot at the heel-off phase while lowering stress around the talus, which may be associated with pain relief near the ankle. These findings suggest further attention should be placed on internal stress in CAI at the push-off phase with implications for long-term foot adaptation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
LGENet: disentangle anatomy and pathology features for late gadolinium enhancement image segmentation. Deep learning for retinal vessel segmentation: a systematic review of techniques and applications. TongueTransUNet: toward effective tongue contour segmentation using well-managed dataset. Drug repositioning based on mutual information for the treatment of Alzheimer's disease patients. InspirationOnly: synthesizing expiratory CT from inspiratory CT to estimate parametric response map.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1