{"title":"脚部组织应力在慢性踝关节不稳定的立场阶段切割。","authors":"Peimin Yu, Xuanzhen Cen, Liangliang Xiang, Alan Wang, Yaodong Gu, Justin Fernandez","doi":"10.1007/s11517-024-03276-9","DOIUrl":null,"url":null,"abstract":"<p><p>Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed. Computed Achilles tendon forces and measured regional plantar pressure were applied as boundary loading conditions for simulation. It was observed that the primary group differences in foot stress occurred during midstance and heel-off phases of the cutting task. Specifically, healthy individuals had significantly higher stress in the talus and soft tissue around the talus compared to CAI participants. In contrast, CAI participants had significantly higher stress in the cuneiforms and lateral forefoot bones during mid-stance and push-off phases. CAI participants appeared to adopt a protective strategy by transferring greater force to the lateral forefoot at the heel-off phase while lowering stress around the talus, which may be associated with pain relief near the ankle. These findings suggest further attention should be placed on internal stress in CAI at the push-off phase with implications for long-term foot adaptation.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Foot tissue stress in chronic ankle instability during the stance phase of cutting.\",\"authors\":\"Peimin Yu, Xuanzhen Cen, Liangliang Xiang, Alan Wang, Yaodong Gu, Justin Fernandez\",\"doi\":\"10.1007/s11517-024-03276-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed. Computed Achilles tendon forces and measured regional plantar pressure were applied as boundary loading conditions for simulation. It was observed that the primary group differences in foot stress occurred during midstance and heel-off phases of the cutting task. Specifically, healthy individuals had significantly higher stress in the talus and soft tissue around the talus compared to CAI participants. In contrast, CAI participants had significantly higher stress in the cuneiforms and lateral forefoot bones during mid-stance and push-off phases. CAI participants appeared to adopt a protective strategy by transferring greater force to the lateral forefoot at the heel-off phase while lowering stress around the talus, which may be associated with pain relief near the ankle. These findings suggest further attention should be placed on internal stress in CAI at the push-off phase with implications for long-term foot adaptation.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03276-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03276-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Foot tissue stress in chronic ankle instability during the stance phase of cutting.
Lower limb biomechanics of chronic ankle instability (CAI) individuals has been widely investigated, but few have evaluated the internal foot mechanics in CAI. This study evaluated bone and soft tissue stress in CAI contrasted with copers and non-injured participants during a cutting task. Integrating scanned 3D foot shapes and free-form deformation, sixty-six personalized finite element foot models were developed. Computed Achilles tendon forces and measured regional plantar pressure were applied as boundary loading conditions for simulation. It was observed that the primary group differences in foot stress occurred during midstance and heel-off phases of the cutting task. Specifically, healthy individuals had significantly higher stress in the talus and soft tissue around the talus compared to CAI participants. In contrast, CAI participants had significantly higher stress in the cuneiforms and lateral forefoot bones during mid-stance and push-off phases. CAI participants appeared to adopt a protective strategy by transferring greater force to the lateral forefoot at the heel-off phase while lowering stress around the talus, which may be associated with pain relief near the ankle. These findings suggest further attention should be placed on internal stress in CAI at the push-off phase with implications for long-term foot adaptation.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).