预测乳腺癌中阿霉素引起的心脏毒性:利用机器学习与合成数据。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2025-01-20 DOI:10.1007/s11517-025-03289-y
Daniella Castro Araújo, Ricardo Simões, Adriano de Paula Sabino, Angélica Navarro de Oliveira, Camila Maciel de Oliveira, Adriano Alonso Veloso, Karina Braga Gomes
{"title":"预测乳腺癌中阿霉素引起的心脏毒性:利用机器学习与合成数据。","authors":"Daniella Castro Araújo, Ricardo Simões, Adriano de Paula Sabino, Angélica Navarro de Oliveira, Camila Maciel de Oliveira, Adriano Alonso Veloso, Karina Braga Gomes","doi":"10.1007/s11517-025-03289-y","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOXO) is a primary treatment for breast cancer but can cause cardiotoxicity in over 25% of patients within the first year post-chemotherapy. Recognizing at-risk patients before DOXO initiation offers pathways for alternative treatments or early protective actions. We analyzed data from 78 Brazilian breast cancer patients, with 34.6% developing cardiotoxicity within a year of their final DOXO dose. To address the limited sample size, we utilized the DAS (Data Augmentation and Smoothing) method, creating 4892 synthetic samples that exhibited high statistics fidelity to the original data. By integrating routine blood biomarkers (C-Reactive protein, total cholesterol, LDL-c, HDL-c, hematocrit, and hemoglobin) and two clinical measures (weighted smoking status and body mass index), our model achieved an AUROC of 0.85±0.10, a sensitivity of 0.89, and a specificity of 0.69, positioning it as a potential screening instrument. Notably, DAS outperformed the established methods, Adaptive Synthetic Sampling (ADASYN), Synthetic Minority Over-Sampling Technique (SMOTE), and Synthetic Data Vault (SDV), underscoring its promise for medical synthetic data generation and pioneering a cardiotoxicity prediction model specifically for DOXO.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting doxorubicin-induced cardiotoxicity in breast cancer: leveraging machine learning with synthetic data.\",\"authors\":\"Daniella Castro Araújo, Ricardo Simões, Adriano de Paula Sabino, Angélica Navarro de Oliveira, Camila Maciel de Oliveira, Adriano Alonso Veloso, Karina Braga Gomes\",\"doi\":\"10.1007/s11517-025-03289-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doxorubicin (DOXO) is a primary treatment for breast cancer but can cause cardiotoxicity in over 25% of patients within the first year post-chemotherapy. Recognizing at-risk patients before DOXO initiation offers pathways for alternative treatments or early protective actions. We analyzed data from 78 Brazilian breast cancer patients, with 34.6% developing cardiotoxicity within a year of their final DOXO dose. To address the limited sample size, we utilized the DAS (Data Augmentation and Smoothing) method, creating 4892 synthetic samples that exhibited high statistics fidelity to the original data. By integrating routine blood biomarkers (C-Reactive protein, total cholesterol, LDL-c, HDL-c, hematocrit, and hemoglobin) and two clinical measures (weighted smoking status and body mass index), our model achieved an AUROC of 0.85±0.10, a sensitivity of 0.89, and a specificity of 0.69, positioning it as a potential screening instrument. Notably, DAS outperformed the established methods, Adaptive Synthetic Sampling (ADASYN), Synthetic Minority Over-Sampling Technique (SMOTE), and Synthetic Data Vault (SDV), underscoring its promise for medical synthetic data generation and pioneering a cardiotoxicity prediction model specifically for DOXO.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03289-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03289-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

多柔比星(DOXO)是乳腺癌的主要治疗方法,但在化疗后的第一年内,超过25%的患者可引起心脏毒性。在DOXO启动之前识别有风险的患者为替代治疗或早期保护行动提供了途径。我们分析了78名巴西乳腺癌患者的数据,其中34.6%的患者在最终服用DOXO后一年内出现心脏毒性。为了解决样本量有限的问题,我们使用DAS(数据增强和平滑)方法,创建了4892个合成样本,这些样本与原始数据具有很高的统计保真度。通过整合常规血液生物标志物(c -反应蛋白、总胆固醇、LDL-c、HDL-c、红细胞压积和血红蛋白)和两项临床指标(加权吸烟状况和体重指数),我们的模型实现了AUROC为0.85±0.10,灵敏度为0.89,特异性为0.69,将其定位为潜在的筛查工具。值得注意的是,DAS优于现有的方法,自适应合成采样(ADASYN),合成少数过度采样技术(SMOTE)和合成数据库(SDV),强调了其在医学合成数据生成方面的前景,并开创了专门针对DOXO的心脏毒性预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting doxorubicin-induced cardiotoxicity in breast cancer: leveraging machine learning with synthetic data.

Doxorubicin (DOXO) is a primary treatment for breast cancer but can cause cardiotoxicity in over 25% of patients within the first year post-chemotherapy. Recognizing at-risk patients before DOXO initiation offers pathways for alternative treatments or early protective actions. We analyzed data from 78 Brazilian breast cancer patients, with 34.6% developing cardiotoxicity within a year of their final DOXO dose. To address the limited sample size, we utilized the DAS (Data Augmentation and Smoothing) method, creating 4892 synthetic samples that exhibited high statistics fidelity to the original data. By integrating routine blood biomarkers (C-Reactive protein, total cholesterol, LDL-c, HDL-c, hematocrit, and hemoglobin) and two clinical measures (weighted smoking status and body mass index), our model achieved an AUROC of 0.85±0.10, a sensitivity of 0.89, and a specificity of 0.69, positioning it as a potential screening instrument. Notably, DAS outperformed the established methods, Adaptive Synthetic Sampling (ADASYN), Synthetic Minority Over-Sampling Technique (SMOTE), and Synthetic Data Vault (SDV), underscoring its promise for medical synthetic data generation and pioneering a cardiotoxicity prediction model specifically for DOXO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
LGENet: disentangle anatomy and pathology features for late gadolinium enhancement image segmentation. Deep learning for retinal vessel segmentation: a systematic review of techniques and applications. TongueTransUNet: toward effective tongue contour segmentation using well-managed dataset. Drug repositioning based on mutual information for the treatment of Alzheimer's disease patients. InspirationOnly: synthesizing expiratory CT from inspiratory CT to estimate parametric response map.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1