SMAD2/3信号决定了水生动物Dynamena pumila的群体结构。

IF 2.2 3区 生物学 Q4 CELL BIOLOGY Differentiation Pub Date : 2025-01-03 DOI:10.1016/j.diff.2025.100834
Alexandra A Vetrova, Stanislav V Kremnyov
{"title":"SMAD2/3信号决定了水生动物Dynamena pumila的群体结构。","authors":"Alexandra A Vetrova, Stanislav V Kremnyov","doi":"10.1016/j.diff.2025.100834","DOIUrl":null,"url":null,"abstract":"<p><p>Most hydrozoan cnidarians form complex colonies that vary in size, shape, and branching patterns. However, little is known about the molecular genetic mechanisms responsible for the diversity of the hydrozoan body plans. The Nodal signaling pathway has previously been shown to be essential for setting up a new body axis in a budding Hydra. This budding process is often compared to the branching of colonial hydrozoans, suggesting that the signaling mechanisms underlying branching and budding are evolutionarily conserved. Using the colonial hydrozoan Dynamena pumila, we demonstrated that colony architecture depends on the activity level of SMAD2/3-mediated signaling. Pharmacological inhibition of the SMAD2/3-mediated Nodal signaling pathway resulted in an altered architecture of D. pumila primary colony, resembling naturally occurring malformation. Additionally, we identified a Nodal-related gene in D. pumila and observed its expression at the earliest stage of new colony module formation. Taken together, our results suggest that TGF-β signaling pathway plays an important role in shaping the morphology of hydrozoan colony.</p>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"141 ","pages":"100834"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SMAD2/3 signaling determines the colony architecture in a hydrozoan, Dynamena pumila.\",\"authors\":\"Alexandra A Vetrova, Stanislav V Kremnyov\",\"doi\":\"10.1016/j.diff.2025.100834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most hydrozoan cnidarians form complex colonies that vary in size, shape, and branching patterns. However, little is known about the molecular genetic mechanisms responsible for the diversity of the hydrozoan body plans. The Nodal signaling pathway has previously been shown to be essential for setting up a new body axis in a budding Hydra. This budding process is often compared to the branching of colonial hydrozoans, suggesting that the signaling mechanisms underlying branching and budding are evolutionarily conserved. Using the colonial hydrozoan Dynamena pumila, we demonstrated that colony architecture depends on the activity level of SMAD2/3-mediated signaling. Pharmacological inhibition of the SMAD2/3-mediated Nodal signaling pathway resulted in an altered architecture of D. pumila primary colony, resembling naturally occurring malformation. Additionally, we identified a Nodal-related gene in D. pumila and observed its expression at the earliest stage of new colony module formation. Taken together, our results suggest that TGF-β signaling pathway plays an important role in shaping the morphology of hydrozoan colony.</p>\",\"PeriodicalId\":50579,\"journal\":{\"name\":\"Differentiation\",\"volume\":\"141 \",\"pages\":\"100834\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.diff.2025.100834\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.diff.2025.100834","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大多数水生刺胞动物形成复杂的菌落,其大小、形状和分支模式各不相同。然而,对水螅体结构多样性的分子遗传机制知之甚少。节点信号通路先前已被证明是在萌发的九头蛇中建立新的身体轴的必要条件。这种出芽过程经常被比作群体水生动物的分支,这表明分支和出芽的信号机制在进化上是保守的。利用群体水生动物Dynamena pumila,我们证明了群体结构取决于smad2 /3介导的信号传导的活性水平。药物抑制smad2 /3介导的节点信号通路导致D. pumila初级集落结构改变,类似于自然发生的畸形。此外,我们在D. pumila中鉴定了一个nodal相关基因,并观察了其在新集落模块形成的最早阶段的表达。综上所述,我们的研究结果表明TGF-β信号通路在水螅动物群体形态的形成中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SMAD2/3 signaling determines the colony architecture in a hydrozoan, Dynamena pumila.

Most hydrozoan cnidarians form complex colonies that vary in size, shape, and branching patterns. However, little is known about the molecular genetic mechanisms responsible for the diversity of the hydrozoan body plans. The Nodal signaling pathway has previously been shown to be essential for setting up a new body axis in a budding Hydra. This budding process is often compared to the branching of colonial hydrozoans, suggesting that the signaling mechanisms underlying branching and budding are evolutionarily conserved. Using the colonial hydrozoan Dynamena pumila, we demonstrated that colony architecture depends on the activity level of SMAD2/3-mediated signaling. Pharmacological inhibition of the SMAD2/3-mediated Nodal signaling pathway resulted in an altered architecture of D. pumila primary colony, resembling naturally occurring malformation. Additionally, we identified a Nodal-related gene in D. pumila and observed its expression at the earliest stage of new colony module formation. Taken together, our results suggest that TGF-β signaling pathway plays an important role in shaping the morphology of hydrozoan colony.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differentiation
Differentiation 生物-发育生物学
CiteScore
4.10
自引率
3.40%
发文量
38
审稿时长
51 days
期刊介绍: Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal. The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest. The principal subject areas the journal covers are: • embryonic patterning and organogenesis • human development and congenital malformation • mechanisms of cell lineage commitment • tissue homeostasis and oncogenic transformation • establishment of cellular polarity • stem cell differentiation • cell reprogramming mechanisms • stability of the differentiated state • cell and tissue interactions in vivo and in vitro • signal transduction pathways in development and differentiation • carcinogenesis and cancer • mechanisms involved in cell growth and division especially relating to cancer • differentiation in regeneration and ageing • therapeutic applications of differentiation processes.
期刊最新文献
NOTCH1, 2, and 3 receptors enhance osteoblastogenesis of mesenchymal C3H10T1/2 cells and inhibit this process in preosteoblastic MC3T3-E1 cells. Delamination of chick cephalic neural crest cells requires an MMP14-dependent downregulation of Cadherin-6B. SMAD2/3 signaling determines the colony architecture in a hydrozoan, Dynamena pumila. Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development. WNT16 primer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1