{"title":"基于交互进化分解的多目标优化方法综述。","authors":"Giomara Lárraga, Kaisa Miettinen","doi":"10.1162/evco_a_00366","DOIUrl":null,"url":null,"abstract":"<p><p>Interactive methods support decision-makers in finding the most preferred solution for multiobjective optimization problems, where multiple conflicting objective functions must be optimized simultaneously. These methods let a decision-maker provide preference information iteratively during the solution process to find solutions of interest, allowing them to learn about the trade-offs in the problem and the feasibility of the preferences. Several interactive evolutionary multiobjective optimization methods have been proposed in the literature. In the evolutionary computation community, the so-called decomposition-basedmethods have been increasingly popular because of their good performance in problems with many objective functions. They decompose the multiobjective optimization problem into multiple sub-problems to be solved collaboratively. Various interactive versions of decomposition-based methods have been proposed. However, most of them do not consider the desirable properties of real interactive solution processes, such as avoiding imposing a high cognitive burden on the decision-maker, allowing them to decide when to interact with the method, and supporting them in selecting a final solution. This paper reviews interactive evolutionary decomposition-based multiobjective optimization methods and different methodologies utilized to incorporate interactivity in them. Additionally, desirable properties of interactive decomposition-based multiobjective evolutionary optimization methods are identified, aiming to make them easier to be applied in real-world problems.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-39"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survey of interactive evolutionary decomposition-based multiobjective optimization methods.\",\"authors\":\"Giomara Lárraga, Kaisa Miettinen\",\"doi\":\"10.1162/evco_a_00366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interactive methods support decision-makers in finding the most preferred solution for multiobjective optimization problems, where multiple conflicting objective functions must be optimized simultaneously. These methods let a decision-maker provide preference information iteratively during the solution process to find solutions of interest, allowing them to learn about the trade-offs in the problem and the feasibility of the preferences. Several interactive evolutionary multiobjective optimization methods have been proposed in the literature. In the evolutionary computation community, the so-called decomposition-basedmethods have been increasingly popular because of their good performance in problems with many objective functions. They decompose the multiobjective optimization problem into multiple sub-problems to be solved collaboratively. Various interactive versions of decomposition-based methods have been proposed. However, most of them do not consider the desirable properties of real interactive solution processes, such as avoiding imposing a high cognitive burden on the decision-maker, allowing them to decide when to interact with the method, and supporting them in selecting a final solution. This paper reviews interactive evolutionary decomposition-based multiobjective optimization methods and different methodologies utilized to incorporate interactivity in them. Additionally, desirable properties of interactive decomposition-based multiobjective evolutionary optimization methods are identified, aiming to make them easier to be applied in real-world problems.</p>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\" \",\"pages\":\"1-39\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/evco_a_00366\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00366","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Survey of interactive evolutionary decomposition-based multiobjective optimization methods.
Interactive methods support decision-makers in finding the most preferred solution for multiobjective optimization problems, where multiple conflicting objective functions must be optimized simultaneously. These methods let a decision-maker provide preference information iteratively during the solution process to find solutions of interest, allowing them to learn about the trade-offs in the problem and the feasibility of the preferences. Several interactive evolutionary multiobjective optimization methods have been proposed in the literature. In the evolutionary computation community, the so-called decomposition-basedmethods have been increasingly popular because of their good performance in problems with many objective functions. They decompose the multiobjective optimization problem into multiple sub-problems to be solved collaboratively. Various interactive versions of decomposition-based methods have been proposed. However, most of them do not consider the desirable properties of real interactive solution processes, such as avoiding imposing a high cognitive burden on the decision-maker, allowing them to decide when to interact with the method, and supporting them in selecting a final solution. This paper reviews interactive evolutionary decomposition-based multiobjective optimization methods and different methodologies utilized to incorporate interactivity in them. Additionally, desirable properties of interactive decomposition-based multiobjective evolutionary optimization methods are identified, aiming to make them easier to be applied in real-world problems.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.