Sangjin Hong, Simone Graf, Christoph von Ballmoos, Robert B Gennis
{"title":"重组人线粒体抽质子烟酰胺核苷酸转氢酶的纯化及特性研究。","authors":"Sangjin Hong, Simone Graf, Christoph von Ballmoos, Robert B Gennis","doi":"10.1016/j.bbabio.2025.149540","DOIUrl":null,"url":null,"abstract":"<p><p>The human mitochondrial nicotinamide nucleotide transhydrogenase (NNT) uses the proton motive force to drive hydride transfer from NADH to NADP<sup>+</sup> and is a major contributor to the generation of mitochondrial NADPH. NNT plays a critical role in maintaining cellular redox balance. NNT-deficiency results in oxidative damage and its absence results in familial glucocorticoid deficiency. Recently it has also become clear that NNT is a tumor promoter whose presence in mouse models of non-small cell lung cancer results in enhanced tumor growth and aggressiveness. The presence of NNT mitigates the effects of oxidative stress and facilitates cancer cell proliferation, suggesting NNT-inhibition as a promising therapeutic strategy. The human NNT is a homodimer in which each subunit has a molecular weight of 114 kDa and 14 transmembrane spans. Here we report on the development of a system for isolating full-length recombinant human NNT using Escherichia coli. The purified enzyme is catalytically active, and the enzyme reconstituted into proteoliposomes pumps protons and generates a proton motive force capable of driving ATP synthesis by E. coli ATP synthase. The recombinant human NNT will facilitate structural and biochemical studies as well as provide a useful tool to develop and characterize potential anti-cancer therapeutics.</p>","PeriodicalId":50731,"journal":{"name":"Biochimica et Biophysica Acta-Bioenergetics","volume":" ","pages":"149540"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Purification and characterization of recombinant human mitochondrial proton-pumping nicotinamide nucleotide transhydrogenase.\",\"authors\":\"Sangjin Hong, Simone Graf, Christoph von Ballmoos, Robert B Gennis\",\"doi\":\"10.1016/j.bbabio.2025.149540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human mitochondrial nicotinamide nucleotide transhydrogenase (NNT) uses the proton motive force to drive hydride transfer from NADH to NADP<sup>+</sup> and is a major contributor to the generation of mitochondrial NADPH. NNT plays a critical role in maintaining cellular redox balance. NNT-deficiency results in oxidative damage and its absence results in familial glucocorticoid deficiency. Recently it has also become clear that NNT is a tumor promoter whose presence in mouse models of non-small cell lung cancer results in enhanced tumor growth and aggressiveness. The presence of NNT mitigates the effects of oxidative stress and facilitates cancer cell proliferation, suggesting NNT-inhibition as a promising therapeutic strategy. The human NNT is a homodimer in which each subunit has a molecular weight of 114 kDa and 14 transmembrane spans. Here we report on the development of a system for isolating full-length recombinant human NNT using Escherichia coli. The purified enzyme is catalytically active, and the enzyme reconstituted into proteoliposomes pumps protons and generates a proton motive force capable of driving ATP synthesis by E. coli ATP synthase. The recombinant human NNT will facilitate structural and biochemical studies as well as provide a useful tool to develop and characterize potential anti-cancer therapeutics.</p>\",\"PeriodicalId\":50731,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"volume\":\" \",\"pages\":\"149540\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Bioenergetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbabio.2025.149540\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Bioenergetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbabio.2025.149540","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Purification and characterization of recombinant human mitochondrial proton-pumping nicotinamide nucleotide transhydrogenase.
The human mitochondrial nicotinamide nucleotide transhydrogenase (NNT) uses the proton motive force to drive hydride transfer from NADH to NADP+ and is a major contributor to the generation of mitochondrial NADPH. NNT plays a critical role in maintaining cellular redox balance. NNT-deficiency results in oxidative damage and its absence results in familial glucocorticoid deficiency. Recently it has also become clear that NNT is a tumor promoter whose presence in mouse models of non-small cell lung cancer results in enhanced tumor growth and aggressiveness. The presence of NNT mitigates the effects of oxidative stress and facilitates cancer cell proliferation, suggesting NNT-inhibition as a promising therapeutic strategy. The human NNT is a homodimer in which each subunit has a molecular weight of 114 kDa and 14 transmembrane spans. Here we report on the development of a system for isolating full-length recombinant human NNT using Escherichia coli. The purified enzyme is catalytically active, and the enzyme reconstituted into proteoliposomes pumps protons and generates a proton motive force capable of driving ATP synthesis by E. coli ATP synthase. The recombinant human NNT will facilitate structural and biochemical studies as well as provide a useful tool to develop and characterize potential anti-cancer therapeutics.
期刊介绍:
BBA Bioenergetics covers the area of biological membranes involved in energy transfer and conversion. In particular, it focuses on the structures obtained by X-ray crystallography and other approaches, and molecular mechanisms of the components of photosynthesis, mitochondrial and bacterial respiration, oxidative phosphorylation, motility and transport. It spans applications of structural biology, molecular modeling, spectroscopy and biophysics in these systems, through bioenergetic aspects of mitochondrial biology including biomedicine aspects of energy metabolism in mitochondrial disorders, neurodegenerative diseases like Parkinson''s and Alzheimer''s, aging, diabetes and even cancer.