Abolfazl Alipour, Thomas W James, Joshua W Brown, Zoran Tiganj
{"title":"空间和时间尺度不变神经表征的自监督学习。","authors":"Abolfazl Alipour, Thomas W James, Joshua W Brown, Zoran Tiganj","doi":"10.1007/s10827-024-00891-1","DOIUrl":null,"url":null,"abstract":"<p><p>Hippocampal representations of space and time seem to share a common coding scheme characterized by neurons with bell-shaped tuning curves called place and time cells. The properties of the tuning curves are consistent with Weber's law, such that, in the absence of visual inputs, width scales with the peak time for time cells and with distance for place cells. Building on earlier computational work, we examined how neurons with such properties can emerge through self-supervised learning. We found that a network based on autoencoders can, given a particular inputs and connectivity constraints, produce scale-invariant time cells. When the animal's velocity modulates the decay rate of the leaky integrators, the same network gives rise to scale-invariant place cells. Importantly, this is not the case when velocity is fed as a direct input to the leaky integrators, implying that weight modulation by velocity might be critical for developing scale-invariant spatial receptive fields. Finally, we demonstrated that after training, scale-invariant place cells emerge in environments larger than those used during training. Taken together, these findings bring us closer to understanding the emergence of neurons with bell-shaped tuning curves in the hippocampus and highlight the critical role of velocity modulation in the formation of scale-invariant place cells.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-supervised learning of scale-invariant neural representations of space and time.\",\"authors\":\"Abolfazl Alipour, Thomas W James, Joshua W Brown, Zoran Tiganj\",\"doi\":\"10.1007/s10827-024-00891-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hippocampal representations of space and time seem to share a common coding scheme characterized by neurons with bell-shaped tuning curves called place and time cells. The properties of the tuning curves are consistent with Weber's law, such that, in the absence of visual inputs, width scales with the peak time for time cells and with distance for place cells. Building on earlier computational work, we examined how neurons with such properties can emerge through self-supervised learning. We found that a network based on autoencoders can, given a particular inputs and connectivity constraints, produce scale-invariant time cells. When the animal's velocity modulates the decay rate of the leaky integrators, the same network gives rise to scale-invariant place cells. Importantly, this is not the case when velocity is fed as a direct input to the leaky integrators, implying that weight modulation by velocity might be critical for developing scale-invariant spatial receptive fields. Finally, we demonstrated that after training, scale-invariant place cells emerge in environments larger than those used during training. Taken together, these findings bring us closer to understanding the emergence of neurons with bell-shaped tuning curves in the hippocampus and highlight the critical role of velocity modulation in the formation of scale-invariant place cells.</p>\",\"PeriodicalId\":54857,\"journal\":{\"name\":\"Journal of Computational Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10827-024-00891-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-024-00891-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Self-supervised learning of scale-invariant neural representations of space and time.
Hippocampal representations of space and time seem to share a common coding scheme characterized by neurons with bell-shaped tuning curves called place and time cells. The properties of the tuning curves are consistent with Weber's law, such that, in the absence of visual inputs, width scales with the peak time for time cells and with distance for place cells. Building on earlier computational work, we examined how neurons with such properties can emerge through self-supervised learning. We found that a network based on autoencoders can, given a particular inputs and connectivity constraints, produce scale-invariant time cells. When the animal's velocity modulates the decay rate of the leaky integrators, the same network gives rise to scale-invariant place cells. Importantly, this is not the case when velocity is fed as a direct input to the leaky integrators, implying that weight modulation by velocity might be critical for developing scale-invariant spatial receptive fields. Finally, we demonstrated that after training, scale-invariant place cells emerge in environments larger than those used during training. Taken together, these findings bring us closer to understanding the emergence of neurons with bell-shaped tuning curves in the hippocampus and highlight the critical role of velocity modulation in the formation of scale-invariant place cells.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.