{"title":"利用人工智能和细胞群数据及时识别住院患者的菌血症。","authors":"Wei-Hsun Chen , Yu-Hsin Chang , Chiung-Tzu Hsiao , Po-Ren Hsueh , Hong-Mo Shih","doi":"10.1016/j.ijmedinf.2025.105788","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Bacteremia is a critical condition with high mortality that requires prompt detection to prevent progression to life-threatening sepsis. Traditional diagnostic approaches, such as blood cultures, are time-consuming. This limitation has encouraged the exploration of rapid prediction methodologies. Cellular Population Data (CPD), which provides detailed insights into white blood cell morphology and functionality, is a promising technique for the early detection of bacteremia.</div></div><div><h3>Methods</h3><div>This study applied machine learning models to analyze laboratory data from hospitalized patients at risk of bacteremia from three hospitals. Using complete blood count (CBC), differential count (DC), and CPD, collected at various time intervals, we trained two sets of artificial intelligence models: one trained using data from patients in the Emergency Department (ED) and another specifically designed for and trained using data from a hospitalized cohort. We evaluated the performance of both models by applying them to the same hospitalized population and comparing their outcomes.</div></div><div><h3>Results</h3><div>The study encompassed analysis of over 66,000 CBC samples. The model tailored for hospitalized patients exhibited superior performance in bacteremia prediction across all cohorts compared with the ED-model, achieving an area under the receiver operating characteristic curve (AUROC) of 0.772 in the validation cohort from China Medical University Hospital and 0.808 and 0.843 in two other hospital cohorts. Notably, nearly half of the top fifteen important features identified by shapely additive explanations values were CPD parameters, underscoring the pivotal role of CPD in predictive models for bacteremia.</div></div><div><h3>Conclusions</h3><div>Artificial intelligence models incorporating CPD data can accurately predict bacteremia in hospitalized patients. Models specifically trained on hospitalized patient data demonstrate enhanced performance over those based on ED data in predicting bacteremia occurrences. Future research must explore the clinical effects of these models, focusing on their potential to assist physicians in managing antibiotic use and patient health.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"195 ","pages":"Article 105788"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing artificial intelligence and cellular population data for timely identification of bacteremia in hospitalized patients\",\"authors\":\"Wei-Hsun Chen , Yu-Hsin Chang , Chiung-Tzu Hsiao , Po-Ren Hsueh , Hong-Mo Shih\",\"doi\":\"10.1016/j.ijmedinf.2025.105788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Bacteremia is a critical condition with high mortality that requires prompt detection to prevent progression to life-threatening sepsis. Traditional diagnostic approaches, such as blood cultures, are time-consuming. This limitation has encouraged the exploration of rapid prediction methodologies. Cellular Population Data (CPD), which provides detailed insights into white blood cell morphology and functionality, is a promising technique for the early detection of bacteremia.</div></div><div><h3>Methods</h3><div>This study applied machine learning models to analyze laboratory data from hospitalized patients at risk of bacteremia from three hospitals. Using complete blood count (CBC), differential count (DC), and CPD, collected at various time intervals, we trained two sets of artificial intelligence models: one trained using data from patients in the Emergency Department (ED) and another specifically designed for and trained using data from a hospitalized cohort. We evaluated the performance of both models by applying them to the same hospitalized population and comparing their outcomes.</div></div><div><h3>Results</h3><div>The study encompassed analysis of over 66,000 CBC samples. The model tailored for hospitalized patients exhibited superior performance in bacteremia prediction across all cohorts compared with the ED-model, achieving an area under the receiver operating characteristic curve (AUROC) of 0.772 in the validation cohort from China Medical University Hospital and 0.808 and 0.843 in two other hospital cohorts. Notably, nearly half of the top fifteen important features identified by shapely additive explanations values were CPD parameters, underscoring the pivotal role of CPD in predictive models for bacteremia.</div></div><div><h3>Conclusions</h3><div>Artificial intelligence models incorporating CPD data can accurately predict bacteremia in hospitalized patients. Models specifically trained on hospitalized patient data demonstrate enhanced performance over those based on ED data in predicting bacteremia occurrences. Future research must explore the clinical effects of these models, focusing on their potential to assist physicians in managing antibiotic use and patient health.</div></div>\",\"PeriodicalId\":54950,\"journal\":{\"name\":\"International Journal of Medical Informatics\",\"volume\":\"195 \",\"pages\":\"Article 105788\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138650562500005X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138650562500005X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Utilizing artificial intelligence and cellular population data for timely identification of bacteremia in hospitalized patients
Background
Bacteremia is a critical condition with high mortality that requires prompt detection to prevent progression to life-threatening sepsis. Traditional diagnostic approaches, such as blood cultures, are time-consuming. This limitation has encouraged the exploration of rapid prediction methodologies. Cellular Population Data (CPD), which provides detailed insights into white blood cell morphology and functionality, is a promising technique for the early detection of bacteremia.
Methods
This study applied machine learning models to analyze laboratory data from hospitalized patients at risk of bacteremia from three hospitals. Using complete blood count (CBC), differential count (DC), and CPD, collected at various time intervals, we trained two sets of artificial intelligence models: one trained using data from patients in the Emergency Department (ED) and another specifically designed for and trained using data from a hospitalized cohort. We evaluated the performance of both models by applying them to the same hospitalized population and comparing their outcomes.
Results
The study encompassed analysis of over 66,000 CBC samples. The model tailored for hospitalized patients exhibited superior performance in bacteremia prediction across all cohorts compared with the ED-model, achieving an area under the receiver operating characteristic curve (AUROC) of 0.772 in the validation cohort from China Medical University Hospital and 0.808 and 0.843 in two other hospital cohorts. Notably, nearly half of the top fifteen important features identified by shapely additive explanations values were CPD parameters, underscoring the pivotal role of CPD in predictive models for bacteremia.
Conclusions
Artificial intelligence models incorporating CPD data can accurately predict bacteremia in hospitalized patients. Models specifically trained on hospitalized patient data demonstrate enhanced performance over those based on ED data in predicting bacteremia occurrences. Future research must explore the clinical effects of these models, focusing on their potential to assist physicians in managing antibiotic use and patient health.
期刊介绍:
International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings.
The scope of journal covers:
Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.;
Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc.
Educational computer based programs pertaining to medical informatics or medicine in general;
Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.