人工智能驱动的生物化学创新:新兴研究前沿综述。

0 MEDICINE, RESEARCH & EXPERIMENTAL Biomolecules & biomedicine Pub Date : 2025-01-14 DOI:10.17305/bb.2024.11537
Mohammed Abdul Lateef Junaid
{"title":"人工智能驱动的生物化学创新:新兴研究前沿综述。","authors":"Mohammed Abdul Lateef Junaid","doi":"10.17305/bb.2024.11537","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) has become a powerful tool in biochemistry, greatly enhancing research capabilities by enabling the analysis of complex datasets, predicting molecular interactions, and accelerating drug discovery. As AI continues to evolve, its applications in biochemistry are poised to expand, revolutionizing both theoretical and applied research. This review explores current and potential AI applications in biochemistry, with a focus on data analysis, molecular modeling, enzyme engineering...</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence driven innovations in biochemistry: A review of emerging research frontiers.\",\"authors\":\"Mohammed Abdul Lateef Junaid\",\"doi\":\"10.17305/bb.2024.11537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Artificial intelligence (AI) has become a powerful tool in biochemistry, greatly enhancing research capabilities by enabling the analysis of complex datasets, predicting molecular interactions, and accelerating drug discovery. As AI continues to evolve, its applications in biochemistry are poised to expand, revolutionizing both theoretical and applied research. This review explores current and potential AI applications in biochemistry, with a focus on data analysis, molecular modeling, enzyme engineering...</p>\",\"PeriodicalId\":72398,\"journal\":{\"name\":\"Biomolecules & biomedicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules & biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17305/bb.2024.11537\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.11537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)已经成为生物化学领域的强大工具,通过分析复杂数据集、预测分子相互作用和加速药物发现,极大地提高了研究能力。随着人工智能的不断发展,其在生物化学中的应用有望扩大,给理论和应用研究带来革命性的变化。本文综述了人工智能在生物化学中的应用现状和潜力,重点介绍了人工智能在数据分析、分子建模、酶工程等方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial intelligence driven innovations in biochemistry: A review of emerging research frontiers.

Artificial intelligence (AI) has become a powerful tool in biochemistry, greatly enhancing research capabilities by enabling the analysis of complex datasets, predicting molecular interactions, and accelerating drug discovery. As AI continues to evolve, its applications in biochemistry are poised to expand, revolutionizing both theoretical and applied research. This review explores current and potential AI applications in biochemistry, with a focus on data analysis, molecular modeling, enzyme engineering...

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Clinical profile and risk factors for respiratory failure in children with Mycoplasma pneumoniae infection. Association between diabetes mellitus and tinnitus: A meta-analysis. Long-term smoking contributes to aging frailty and inflammatory response. Deep learning approach based on a patch residual for pediatric supracondylar subtle fracture detection. The molecular mechanisms of cuproptosis and its relevance to atherosclerosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1