加速罕见疾病的基因组学研究。

ArXiv Pub Date : 2024-12-18
Moez Dawood, Ben Heavner, Marsha M Wheeler, Rachel A Ungar, Jonathan LoTempio, Laurens Wiel, Seth Berger, Jonathan A Bernstein, Jessica X Chong, Emmanuèle C Délot, Evan E Eichler, Richard A Gibbs, James R Lupski, Ali Shojaie, Michael E Talkowski, Alex H Wagner, Chia-Lin Wei, Christopher Wellington, Matthew T Wheeler, Claudia M B Carvalho, Casey A Gifford, Susanne May, Danny E Miller, Heidi L Rehm, Fritz J Sedlazeck, Eric Vilain, Anne O'Donnell-Luria, Jennifer E Posey, Lisa H Chadwick, Michael J Bamshad, Stephen B Montgomery
{"title":"加速罕见疾病的基因组学研究。","authors":"Moez Dawood, Ben Heavner, Marsha M Wheeler, Rachel A Ungar, Jonathan LoTempio, Laurens Wiel, Seth Berger, Jonathan A Bernstein, Jessica X Chong, Emmanuèle C Délot, Evan E Eichler, Richard A Gibbs, James R Lupski, Ali Shojaie, Michael E Talkowski, Alex H Wagner, Chia-Lin Wei, Christopher Wellington, Matthew T Wheeler, Claudia M B Carvalho, Casey A Gifford, Susanne May, Danny E Miller, Heidi L Rehm, Fritz J Sedlazeck, Eric Vilain, Anne O'Donnell-Luria, Jennifer E Posey, Lisa H Chadwick, Michael J Bamshad, Stephen B Montgomery","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Rare diseases are collectively common, affecting approximately one in twenty individuals worldwide. In recent years, rapid progress has been made in rare disease diagnostics due to advances in DNA sequencing, development of new computational and experimental approaches to prioritize genes and genetic variants, and increased global exchange of clinical and genetic data. However, more than half of individuals suspected to have a rare disease lack a genetic diagnosis. The Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR) Consortium was initiated to study thousands of challenging rare disease cases and families and apply, standardize, and evaluate emerging genomics technologies and analytics to accelerate their adoption in clinical practice. Further, all data generated, currently representing ~7500 individuals from ~3000 families, is rapidly made available to researchers worldwide via the Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) to catalyze global efforts to develop approaches for genetic diagnoses in rare diseases (https://gregorconsortium.org/data). The majority of these families have undergone prior clinical genetic testing but remained unsolved, with most being exome-negative. Here, we describe the collaborative research framework, datasets, and discoveries comprising GREGoR that will provide foundational resources and substrates for the future of rare disease genomics.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702807/pdf/","citationCount":"0","resultStr":"{\"title\":\"GREGoR: Accelerating Genomics for Rare Diseases.\",\"authors\":\"Moez Dawood, Ben Heavner, Marsha M Wheeler, Rachel A Ungar, Jonathan LoTempio, Laurens Wiel, Seth Berger, Jonathan A Bernstein, Jessica X Chong, Emmanuèle C Délot, Evan E Eichler, Richard A Gibbs, James R Lupski, Ali Shojaie, Michael E Talkowski, Alex H Wagner, Chia-Lin Wei, Christopher Wellington, Matthew T Wheeler, Claudia M B Carvalho, Casey A Gifford, Susanne May, Danny E Miller, Heidi L Rehm, Fritz J Sedlazeck, Eric Vilain, Anne O'Donnell-Luria, Jennifer E Posey, Lisa H Chadwick, Michael J Bamshad, Stephen B Montgomery\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rare diseases are collectively common, affecting approximately one in twenty individuals worldwide. In recent years, rapid progress has been made in rare disease diagnostics due to advances in DNA sequencing, development of new computational and experimental approaches to prioritize genes and genetic variants, and increased global exchange of clinical and genetic data. However, more than half of individuals suspected to have a rare disease lack a genetic diagnosis. The Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR) Consortium was initiated to study thousands of challenging rare disease cases and families and apply, standardize, and evaluate emerging genomics technologies and analytics to accelerate their adoption in clinical practice. Further, all data generated, currently representing ~7500 individuals from ~3000 families, is rapidly made available to researchers worldwide via the Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) to catalyze global efforts to develop approaches for genetic diagnoses in rare diseases (https://gregorconsortium.org/data). The majority of these families have undergone prior clinical genetic testing but remained unsolved, with most being exome-negative. Here, we describe the collaborative research framework, datasets, and discoveries comprising GREGoR that will provide foundational resources and substrates for the future of rare disease genomics.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702807/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

罕见病总体上很常见,全世界约有二十分之一的人受其影响。近年来,由于DNA测序的进步,开发了新的计算和实验方法来确定基因和遗传变异的优先次序,以及全球临床和遗传数据的交流增加,罕见病诊断取得了快速进展。然而,超过一半被怀疑患有罕见疾病的人缺乏基因诊断。基因组学研究阐明罕见病遗传学(GREGoR)联盟成立,旨在研究数千例具有挑战性的罕见病病例和家族,并应用、标准化和评估新兴的基因组学技术和分析,以加速其在临床实践中的应用。此外,通过基因组数据科学分析、可视化和信息学实验室空间(AnVIL),所有生成的数据(目前代表来自3000个家庭的约7500个个体)将迅速提供给全世界的研究人员,以促进全球开发罕见疾病遗传诊断方法的努力(https://gregorconsortium.org/data)。这些家庭中的大多数已经进行了先前的临床基因检测,但仍然没有解决,大多数是外显子组阴性。在这里,我们描述了合作研究框架、数据集和发现,包括GREGoR,将为罕见疾病基因组学的未来提供基础资源和基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GREGoR: Accelerating Genomics for Rare Diseases.

Rare diseases are collectively common, affecting approximately one in twenty individuals worldwide. In recent years, rapid progress has been made in rare disease diagnostics due to advances in DNA sequencing, development of new computational and experimental approaches to prioritize genes and genetic variants, and increased global exchange of clinical and genetic data. However, more than half of individuals suspected to have a rare disease lack a genetic diagnosis. The Genomics Research to Elucidate the Genetics of Rare Diseases (GREGoR) Consortium was initiated to study thousands of challenging rare disease cases and families and apply, standardize, and evaluate emerging genomics technologies and analytics to accelerate their adoption in clinical practice. Further, all data generated, currently representing ~7500 individuals from ~3000 families, is rapidly made available to researchers worldwide via the Genomic Data Science Analysis, Visualization, and Informatics Lab-space (AnVIL) to catalyze global efforts to develop approaches for genetic diagnoses in rare diseases (https://gregorconsortium.org/data). The majority of these families have undergone prior clinical genetic testing but remained unsolved, with most being exome-negative. Here, we describe the collaborative research framework, datasets, and discoveries comprising GREGoR that will provide foundational resources and substrates for the future of rare disease genomics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grade Inflation in Generative Models. A recent evaluation on the performance of LLMs on radiation oncology physics using questions of randomly shuffled options. A Systematic Computational Framework for Practical Identifiability Analysis in Mathematical Models Arising from Biology. Back to the Continuous Attractor. Inferring resource competition in microbial communities from time series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1