{"title":"芹菜素通过pten介导的AKT信号通路增强氧化抵抗和蛋白质抑制,延长寿命。","authors":"Zhengqiong Sun , Lei Li , Lei Zhang","doi":"10.1016/j.bbadis.2025.167670","DOIUrl":null,"url":null,"abstract":"<div><div>Aging is a complicated process, featuring the progressive deterioration of physiological functions and a heightened susceptibility to diseases including neurodegenerative disorders, cardiovascular diseases, and cancer. Apigenin, a flavonoid existing in various plants, has attracted attention due to its potential role in anti-aging. In this investigation, the potential effect of apigenin on extending lifespan in <em>Saccharomyces cerevisiae</em> (yeast) and <em>Drosophila melanogaster</em> (flies) was explored. The results indicate that apigenin significantly extends both replicative and chronological life duration in yeast, as well as longevity in male and female flies. Apigenin treatment also improves resistance to oxidative stress in both organisms, as manifested by enhanced survival, decreased reactive oxygen species (ROS) levels and upregulation of antioxidant enzymes. Furthermore, apigenin activates crucial elements of the proteostasis network (PN), such as upregulation of proteostasis-related enzymes activity and genes expression. Network analysis revealed that apigenin affects aging conserved in the longevity-regulating pathway. Notably, Pten is a hub target in flies. Apigenin regulated DmPten at both mRNA and protein expression level while modulating downstream targets, including the phosphorylation of AKT and associated signalling pathways. In a high-sucrose diet (HSD) model, Apigenin treatment extended lifespan, reduced hemolymph glucose levels, enhanced Pten expression, suppressed AKT phosphorylation, and modulated the phosphorylation status of S6K and expression of <em>DmFoxo</em>. These results demonstrate that apigenin could serve as a longevity research object and potential therapeutic drug for promoting health and longevity through its antioxidant and proteostatic properties.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 3","pages":"Article 167670"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apigenin enhancing oxidative resistance and proteostasis to extend lifespan via PTEN-mediated AKT signalling pathway\",\"authors\":\"Zhengqiong Sun , Lei Li , Lei Zhang\",\"doi\":\"10.1016/j.bbadis.2025.167670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Aging is a complicated process, featuring the progressive deterioration of physiological functions and a heightened susceptibility to diseases including neurodegenerative disorders, cardiovascular diseases, and cancer. Apigenin, a flavonoid existing in various plants, has attracted attention due to its potential role in anti-aging. In this investigation, the potential effect of apigenin on extending lifespan in <em>Saccharomyces cerevisiae</em> (yeast) and <em>Drosophila melanogaster</em> (flies) was explored. The results indicate that apigenin significantly extends both replicative and chronological life duration in yeast, as well as longevity in male and female flies. Apigenin treatment also improves resistance to oxidative stress in both organisms, as manifested by enhanced survival, decreased reactive oxygen species (ROS) levels and upregulation of antioxidant enzymes. Furthermore, apigenin activates crucial elements of the proteostasis network (PN), such as upregulation of proteostasis-related enzymes activity and genes expression. Network analysis revealed that apigenin affects aging conserved in the longevity-regulating pathway. Notably, Pten is a hub target in flies. Apigenin regulated DmPten at both mRNA and protein expression level while modulating downstream targets, including the phosphorylation of AKT and associated signalling pathways. In a high-sucrose diet (HSD) model, Apigenin treatment extended lifespan, reduced hemolymph glucose levels, enhanced Pten expression, suppressed AKT phosphorylation, and modulated the phosphorylation status of S6K and expression of <em>DmFoxo</em>. These results demonstrate that apigenin could serve as a longevity research object and potential therapeutic drug for promoting health and longevity through its antioxidant and proteostatic properties.</div></div>\",\"PeriodicalId\":8821,\"journal\":{\"name\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"volume\":\"1871 3\",\"pages\":\"Article 167670\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et biophysica acta. Molecular basis of disease\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925443925000158\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925000158","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Apigenin enhancing oxidative resistance and proteostasis to extend lifespan via PTEN-mediated AKT signalling pathway
Aging is a complicated process, featuring the progressive deterioration of physiological functions and a heightened susceptibility to diseases including neurodegenerative disorders, cardiovascular diseases, and cancer. Apigenin, a flavonoid existing in various plants, has attracted attention due to its potential role in anti-aging. In this investigation, the potential effect of apigenin on extending lifespan in Saccharomyces cerevisiae (yeast) and Drosophila melanogaster (flies) was explored. The results indicate that apigenin significantly extends both replicative and chronological life duration in yeast, as well as longevity in male and female flies. Apigenin treatment also improves resistance to oxidative stress in both organisms, as manifested by enhanced survival, decreased reactive oxygen species (ROS) levels and upregulation of antioxidant enzymes. Furthermore, apigenin activates crucial elements of the proteostasis network (PN), such as upregulation of proteostasis-related enzymes activity and genes expression. Network analysis revealed that apigenin affects aging conserved in the longevity-regulating pathway. Notably, Pten is a hub target in flies. Apigenin regulated DmPten at both mRNA and protein expression level while modulating downstream targets, including the phosphorylation of AKT and associated signalling pathways. In a high-sucrose diet (HSD) model, Apigenin treatment extended lifespan, reduced hemolymph glucose levels, enhanced Pten expression, suppressed AKT phosphorylation, and modulated the phosphorylation status of S6K and expression of DmFoxo. These results demonstrate that apigenin could serve as a longevity research object and potential therapeutic drug for promoting health and longevity through its antioxidant and proteostatic properties.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.