模拟肿瘤细胞的非遗传适应。

Edmund C Lattime, Subhajyoti De
{"title":"模拟肿瘤细胞的非遗传适应。","authors":"Edmund C Lattime, Subhajyoti De","doi":"10.1016/j.cels.2024.12.007","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment resistance poses a significant challenge in the care of cancer patients. Hirsch et al. applied computational and genomic approaches, examining gene expression dynamics from a mouse model of melanoma at single-cell resolution to reveal that semi-heritable non-genetic alterations in tumor cell populations confer adaptive resistance to treatment.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"16 1","pages":"101166"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling non-genetic adaptation in tumor cells.\",\"authors\":\"Edmund C Lattime, Subhajyoti De\",\"doi\":\"10.1016/j.cels.2024.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatment resistance poses a significant challenge in the care of cancer patients. Hirsch et al. applied computational and genomic approaches, examining gene expression dynamics from a mouse model of melanoma at single-cell resolution to reveal that semi-heritable non-genetic alterations in tumor cell populations confer adaptive resistance to treatment.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\"16 1\",\"pages\":\"101166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2024.12.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.12.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

治疗耐药性对癌症患者的护理提出了重大挑战。Hirsch等人应用计算和基因组方法,在单细胞分辨率下检查黑色素瘤小鼠模型的基因表达动态,揭示肿瘤细胞群中半遗传的非遗传改变赋予了对治疗的适应性抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling non-genetic adaptation in tumor cells.

Treatment resistance poses a significant challenge in the care of cancer patients. Hirsch et al. applied computational and genomic approaches, examining gene expression dynamics from a mouse model of melanoma at single-cell resolution to reveal that semi-heritable non-genetic alterations in tumor cell populations confer adaptive resistance to treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proliferation history and transcription factor levels drive direct conversion to motor neurons. Compact transcription factor cassettes generate functional, engraftable motor neurons by direct conversion. Engineering highly active nuclease enzymes with machine learning and high-throughput screening. Multiplexed dynamic control of temperature to probe and observe mammalian cells. Self-resistance-gene-guided, high-throughput automated genome mining of bioactive natural products from Streptomyces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1