{"title":"模拟肿瘤细胞的非遗传适应。","authors":"Edmund C Lattime, Subhajyoti De","doi":"10.1016/j.cels.2024.12.007","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment resistance poses a significant challenge in the care of cancer patients. Hirsch et al. applied computational and genomic approaches, examining gene expression dynamics from a mouse model of melanoma at single-cell resolution to reveal that semi-heritable non-genetic alterations in tumor cell populations confer adaptive resistance to treatment.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"16 1","pages":"101166"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling non-genetic adaptation in tumor cells.\",\"authors\":\"Edmund C Lattime, Subhajyoti De\",\"doi\":\"10.1016/j.cels.2024.12.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatment resistance poses a significant challenge in the care of cancer patients. Hirsch et al. applied computational and genomic approaches, examining gene expression dynamics from a mouse model of melanoma at single-cell resolution to reveal that semi-heritable non-genetic alterations in tumor cell populations confer adaptive resistance to treatment.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\"16 1\",\"pages\":\"101166\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2024.12.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2024.12.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Treatment resistance poses a significant challenge in the care of cancer patients. Hirsch et al. applied computational and genomic approaches, examining gene expression dynamics from a mouse model of melanoma at single-cell resolution to reveal that semi-heritable non-genetic alterations in tumor cell populations confer adaptive resistance to treatment.