在实际船舶监测中解决不熟悉船型识别:多角度度量网络框架

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Frontiers in Marine Science Pub Date : 2025-01-22 DOI:10.3389/fmars.2024.1516586
Jiahua Sun, Jiawen Li, Ronghui Li, Langtao Wu, Liang Cao, Molin Sun
{"title":"在实际船舶监测中解决不熟悉船型识别:多角度度量网络框架","authors":"Jiahua Sun, Jiawen Li, Ronghui Li, Langtao Wu, Liang Cao, Molin Sun","doi":"10.3389/fmars.2024.1516586","DOIUrl":null,"url":null,"abstract":"Intelligent ship monitoring technology, driven by its exceptional data fitting ability, has emerged as a crucial component within the field of intelligent maritime perception. However, existing deep learning-based ship monitoring studies primarily focus on minimizing the discrepancy between predicted and true labels during model training. This approach, unfortunately, restricts the model to learning only from labeled ship samples within the training set, limiting its capacity to recognize new and unseen ship categories. To address this challenge and enhance the model’s generalization ability and adaptability, a novel framework is presented, termed MultiAngle Metric Networks. The proposed framework incorporates ResNet as its foundation. By employing a novel multi-scale loss function and a new similarity measure, the framework effectively learns ship patterns by minimizing sample distances within the same category and maximizing distances between samples of different categories. The experimental results indicate that the proposed framework achieves the highest level of ship monitoring accuracy when evaluated on three distinct ship monitoring datasets. Even in the case of unfamiliar ships, where the detection performance of conventional models significantly deteriorates, the framework maintains stable and efficient detection capabilities. These experimental results highlight the framework’s ability to effectively generalize its understanding beyond the training samples and adapt to real-world scenarios.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Addressing unfamiliar ship type recognition in real-scenario vessel monitoring: a multi-angle metric networks framework\",\"authors\":\"Jiahua Sun, Jiawen Li, Ronghui Li, Langtao Wu, Liang Cao, Molin Sun\",\"doi\":\"10.3389/fmars.2024.1516586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent ship monitoring technology, driven by its exceptional data fitting ability, has emerged as a crucial component within the field of intelligent maritime perception. However, existing deep learning-based ship monitoring studies primarily focus on minimizing the discrepancy between predicted and true labels during model training. This approach, unfortunately, restricts the model to learning only from labeled ship samples within the training set, limiting its capacity to recognize new and unseen ship categories. To address this challenge and enhance the model’s generalization ability and adaptability, a novel framework is presented, termed MultiAngle Metric Networks. The proposed framework incorporates ResNet as its foundation. By employing a novel multi-scale loss function and a new similarity measure, the framework effectively learns ship patterns by minimizing sample distances within the same category and maximizing distances between samples of different categories. The experimental results indicate that the proposed framework achieves the highest level of ship monitoring accuracy when evaluated on three distinct ship monitoring datasets. Even in the case of unfamiliar ships, where the detection performance of conventional models significantly deteriorates, the framework maintains stable and efficient detection capabilities. These experimental results highlight the framework’s ability to effectively generalize its understanding beyond the training samples and adapt to real-world scenarios.\",\"PeriodicalId\":12479,\"journal\":{\"name\":\"Frontiers in Marine Science\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Marine Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmars.2024.1516586\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1516586","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

智能船舶监测技术凭借其出色的数据拟合能力,已成为智能海事感知领域的重要组成部分。然而,现有的基于深度学习的船舶监测研究主要集中在最小化模型训练过程中预测标签与真实标签之间的差异。不幸的是,这种方法限制了模型只能从训练集中标记的船舶样本中学习,限制了它识别新的和未见过的船舶类别的能力。为了解决这一问题,提高模型的泛化能力和适应性,提出了一种新的框架,称为多角度度量网络。提议的框架将ResNet作为其基础。通过采用一种新的多尺度损失函数和一种新的相似度度量,该框架通过最小化同一类别内的样本距离和最大化不同类别样本之间的距离来有效地学习船舶模式。实验结果表明,该框架在三种不同的船舶监测数据集上达到了最高的船舶监测精度。即使在不熟悉船舶的情况下,传统模型的检测性能显著下降,该框架也能保持稳定高效的检测能力。这些实验结果突出了该框架在训练样本之外有效推广其理解并适应现实世界场景的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Addressing unfamiliar ship type recognition in real-scenario vessel monitoring: a multi-angle metric networks framework
Intelligent ship monitoring technology, driven by its exceptional data fitting ability, has emerged as a crucial component within the field of intelligent maritime perception. However, existing deep learning-based ship monitoring studies primarily focus on minimizing the discrepancy between predicted and true labels during model training. This approach, unfortunately, restricts the model to learning only from labeled ship samples within the training set, limiting its capacity to recognize new and unseen ship categories. To address this challenge and enhance the model’s generalization ability and adaptability, a novel framework is presented, termed MultiAngle Metric Networks. The proposed framework incorporates ResNet as its foundation. By employing a novel multi-scale loss function and a new similarity measure, the framework effectively learns ship patterns by minimizing sample distances within the same category and maximizing distances between samples of different categories. The experimental results indicate that the proposed framework achieves the highest level of ship monitoring accuracy when evaluated on three distinct ship monitoring datasets. Even in the case of unfamiliar ships, where the detection performance of conventional models significantly deteriorates, the framework maintains stable and efficient detection capabilities. These experimental results highlight the framework’s ability to effectively generalize its understanding beyond the training samples and adapt to real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
期刊最新文献
Effect of delayed sea ice retreat on zooplankton communities in the Pacific Arctic Ocean: a generalized dissimilarity modeling approach Estimates of disclosure and victimization rates for fishery observers in the maritime workplace The size-fractionated composition of particulate biogenic silica and its ecological significance in the Changjiang Estuary area Location and natural history are key to determining impact of the 2021 atmospheric heatwave on Pacific Northwest rocky intertidal communities Two new species of Plagiostomum (Prolecithophora, Plagiostomidae) from China with its morphology, phylogeny, and reproductive strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1