印度中脊超镁铁质含矿Mirae-2喷口田多源热液成矿作用

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Mineralium Deposita Pub Date : 2025-01-23 DOI:10.1007/s00126-025-01347-x
Sun Ki Choi, Jonguk Kim, Sang Joon Pak, Wonnyon Kim, Hwimin Jang, Ryoung Gyun Kim
{"title":"印度中脊超镁铁质含矿Mirae-2喷口田多源热液成矿作用","authors":"Sun Ki Choi, Jonguk Kim, Sang Joon Pak, Wonnyon Kim, Hwimin Jang, Ryoung Gyun Kim","doi":"10.1007/s00126-025-01347-x","DOIUrl":null,"url":null,"abstract":"<p>Modern seafloor massive sulfide deposits distributed along mid-ocean ridges are typically classified as mid-ocean ridge basalt- and ultramafic-hosted types, based on mineralogical and geochemical characteristics that result from the different water–rock interactions between the two substrates. However, the Mirae-2 vent field (MVF-2) along Central Indian Ridge, which was newly discovered on the slope of an oceanic core complex, deviates from this common concept. Mineralogical and geochemical data indicate that the formation of chimney and mound samples was primarily controlled by changes in physicochemical fluid conditions (temperature, pH, ƒS<sub>2</sub>, and ƒO<sub>2</sub>) driven by varying degrees of fluid–seawater mixing. In particular, the prevalence of sulfide assemblages (pyrrhotite + isocubanite + Fe-rich sphalerite), the Cu–Au-rich mineralisation, and the enrichments of Co (average = 1109 ppm) and Sn (203 ppm) are similar to those of other ultramafic-hosted sulfide deposits, but the high amounts of barite and galena, and the enrichments of Ba (&gt; 100,000 ppm) and Pb (up to 8.91 wt%) reflect the contribution of distinct metal sources other than ultramafic substrates. The extremely positive δ<sup>34</sup>S values of pyrite (average = + 15.1 ± 1.7‰) and pyrrhotite (+ 6.37 ± 0.5‰) indicate that metals and S in the MVF-2 were likely derived from serpentinised ultramafic rocks with intense mixing of fluids with seawater, whereas the unusually radiogenic Pb isotope ratios of sphalerite (<sup>206</sup>Pb/<sup>204</sup>Pb = 18.531–18.559, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.540–15.564, and <sup>208</sup>Pb/<sup>204</sup>Pb = 38.632–38.693) suggest that the enriched mid-ocean ridge basalts (i.e., MVF-2 basalts) near the ridge axis also had an important role in the supply of some metals (Pb and Ba) to the MVF-2 fluids. Our results indicate that the multi-stage fluid-rock reactions with basalt and subsequent ultramafic rocks produced the multi-source hydrothermal fluids, thereby resulting in the different mineralogy and geochemistry of the MVF-2 compared with other ultramafic-hosted sulfide deposits.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"62 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-source hydrothermal mineralisation in the ultramafic-hosted Mirae-2 vent field, Central Indian Ridge\",\"authors\":\"Sun Ki Choi, Jonguk Kim, Sang Joon Pak, Wonnyon Kim, Hwimin Jang, Ryoung Gyun Kim\",\"doi\":\"10.1007/s00126-025-01347-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modern seafloor massive sulfide deposits distributed along mid-ocean ridges are typically classified as mid-ocean ridge basalt- and ultramafic-hosted types, based on mineralogical and geochemical characteristics that result from the different water–rock interactions between the two substrates. However, the Mirae-2 vent field (MVF-2) along Central Indian Ridge, which was newly discovered on the slope of an oceanic core complex, deviates from this common concept. Mineralogical and geochemical data indicate that the formation of chimney and mound samples was primarily controlled by changes in physicochemical fluid conditions (temperature, pH, ƒS<sub>2</sub>, and ƒO<sub>2</sub>) driven by varying degrees of fluid–seawater mixing. In particular, the prevalence of sulfide assemblages (pyrrhotite + isocubanite + Fe-rich sphalerite), the Cu–Au-rich mineralisation, and the enrichments of Co (average = 1109 ppm) and Sn (203 ppm) are similar to those of other ultramafic-hosted sulfide deposits, but the high amounts of barite and galena, and the enrichments of Ba (&gt; 100,000 ppm) and Pb (up to 8.91 wt%) reflect the contribution of distinct metal sources other than ultramafic substrates. The extremely positive δ<sup>34</sup>S values of pyrite (average = + 15.1 ± 1.7‰) and pyrrhotite (+ 6.37 ± 0.5‰) indicate that metals and S in the MVF-2 were likely derived from serpentinised ultramafic rocks with intense mixing of fluids with seawater, whereas the unusually radiogenic Pb isotope ratios of sphalerite (<sup>206</sup>Pb/<sup>204</sup>Pb = 18.531–18.559, <sup>207</sup>Pb/<sup>204</sup>Pb = 15.540–15.564, and <sup>208</sup>Pb/<sup>204</sup>Pb = 38.632–38.693) suggest that the enriched mid-ocean ridge basalts (i.e., MVF-2 basalts) near the ridge axis also had an important role in the supply of some metals (Pb and Ba) to the MVF-2 fluids. Our results indicate that the multi-stage fluid-rock reactions with basalt and subsequent ultramafic rocks produced the multi-source hydrothermal fluids, thereby resulting in the different mineralogy and geochemistry of the MVF-2 compared with other ultramafic-hosted sulfide deposits.</p>\",\"PeriodicalId\":18682,\"journal\":{\"name\":\"Mineralium Deposita\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mineralium Deposita\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00126-025-01347-x\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-025-01347-x","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

现代海底块状硫化物矿床分布在洋中脊,根据两种基底之间不同的水岩相互作用所产生的矿物学和地球化学特征,通常分为洋中脊玄武岩型和超镁铁质型。但是,在海洋核杂岩斜坡上新发现的沿印度中部山脊的未来2号火山口(MVF-2)却与这一普遍概念不同。矿物学和地球化学数据表明,烟囱和丘样的形成主要受不同程度的流体-海水混合驱动的物化流体条件(温度、pH、ƒS2和ƒO2)变化控制。特别是,硫化物组合(磁黄铁矿+等长石+富铁闪锌矿)的普遍存在,铜-金矿化,Co(平均= 1109 ppm)和Sn (203 ppm)的富集与其他超镁铁质硫化物矿床相似,但重晶石和方铅矿的高含量,Ba (> 100,000 ppm)和Pb(高达8.91 wt%)的富集反映了不同金属来源的贡献,而不是超镁铁质底物。黄铁矿(平均= + 15.1±1.7‰)和磁黄铁矿(+ 6.37±0.5‰)的极正δ34S值表明MVF-2中的金属和S可能来源于流体与海水强烈混合的蛇纹超镁铁质岩石,而闪锌矿的异常放射性成因Pb同位素比值(206Pb/204Pb = 18.531 ~ 18.559, 207Pb/204Pb = 15.540 ~ 15.564, 208Pb/204Pb = 38.632 ~ 38.693)表明富集的洋中脊玄武岩(即靠近脊轴的MVF-2玄武岩在向MVF-2流体提供某些金属(Pb和Ba)方面也起着重要作用。研究结果表明,与玄武岩及其后的超镁铁质岩的多期流-岩反应产生了多源热液流体,从而导致MVF-2硫化物矿床的矿物学和地球化学特征与其他超镁铁质硫化物矿床不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-source hydrothermal mineralisation in the ultramafic-hosted Mirae-2 vent field, Central Indian Ridge

Modern seafloor massive sulfide deposits distributed along mid-ocean ridges are typically classified as mid-ocean ridge basalt- and ultramafic-hosted types, based on mineralogical and geochemical characteristics that result from the different water–rock interactions between the two substrates. However, the Mirae-2 vent field (MVF-2) along Central Indian Ridge, which was newly discovered on the slope of an oceanic core complex, deviates from this common concept. Mineralogical and geochemical data indicate that the formation of chimney and mound samples was primarily controlled by changes in physicochemical fluid conditions (temperature, pH, ƒS2, and ƒO2) driven by varying degrees of fluid–seawater mixing. In particular, the prevalence of sulfide assemblages (pyrrhotite + isocubanite + Fe-rich sphalerite), the Cu–Au-rich mineralisation, and the enrichments of Co (average = 1109 ppm) and Sn (203 ppm) are similar to those of other ultramafic-hosted sulfide deposits, but the high amounts of barite and galena, and the enrichments of Ba (> 100,000 ppm) and Pb (up to 8.91 wt%) reflect the contribution of distinct metal sources other than ultramafic substrates. The extremely positive δ34S values of pyrite (average = + 15.1 ± 1.7‰) and pyrrhotite (+ 6.37 ± 0.5‰) indicate that metals and S in the MVF-2 were likely derived from serpentinised ultramafic rocks with intense mixing of fluids with seawater, whereas the unusually radiogenic Pb isotope ratios of sphalerite (206Pb/204Pb = 18.531–18.559, 207Pb/204Pb = 15.540–15.564, and 208Pb/204Pb = 38.632–38.693) suggest that the enriched mid-ocean ridge basalts (i.e., MVF-2 basalts) near the ridge axis also had an important role in the supply of some metals (Pb and Ba) to the MVF-2 fluids. Our results indicate that the multi-stage fluid-rock reactions with basalt and subsequent ultramafic rocks produced the multi-source hydrothermal fluids, thereby resulting in the different mineralogy and geochemistry of the MVF-2 compared with other ultramafic-hosted sulfide deposits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
期刊最新文献
Apatite as a pathfinder to tin mineralisation: prospects and caveats The mineralogical distribution of Ni in mantle rocks controls the fertility of magmatic Ni-sulfide systems Unravelling the mechanisms underlying marine redox shifts during sedimentary manganese metallogenesis: insights from the Carboniferous Muhu deposit, China Multi-source hydrothermal mineralisation in the ultramafic-hosted Mirae-2 vent field, Central Indian Ridge Tourmaline as a textural, geochemical and isotopic marker of fault valve processes recorded at the Paleoproterozoic Lafigué orogenic gold deposit, Ivory Coast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1