通过中间带和多尺度缺陷工程提高Al/Na共掺杂SnSe多晶的热电性能

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-02-01 DOI:10.1016/j.mtphys.2025.101660
Nan Xin , Yilong Zhang , Yifei Li , Guihua Tang , Yinan Nie , Yang Hu , Min Zhang , Xin Zhao , Dian Huang , Hao Shen
{"title":"通过中间带和多尺度缺陷工程提高Al/Na共掺杂SnSe多晶的热电性能","authors":"Nan Xin ,&nbsp;Yilong Zhang ,&nbsp;Yifei Li ,&nbsp;Guihua Tang ,&nbsp;Yinan Nie ,&nbsp;Yang Hu ,&nbsp;Min Zhang ,&nbsp;Xin Zhao ,&nbsp;Dian Huang ,&nbsp;Hao Shen","doi":"10.1016/j.mtphys.2025.101660","DOIUrl":null,"url":null,"abstract":"<div><div>Thermoelectric (TE) materials have great potential in the energy recovery and environmental protection. Single crystal tin selenide (SnSe) demonstrates advantaged TE performance across a broad temperature range, but it is easy to form mechanical cracks and difficult to apply in devices. Poly-crystallization effectively enhances its mechanical properties but severely limits the hole transport reducing TE performance. Here, we provide an efficient strategy to increase hole concentration and introduce intermediate band for enhancing the electrical performance of polycrystalline SnSe in its advantaged temperature range via Al/Na co-doping. Specifically, Na dopant increases the hole concentration from 2.60 × 10<sup>17</sup> cm<sup>−3</sup> to 1.20 × 10<sup>19</sup> cm<sup>−3</sup>, while Al dopant introduces intermediate band to reduce the thermal excitation temperature and promote the hole transition. As a result, the power factor of Al<sub>0.01</sub>Na<sub>0.01</sub>Sn<sub>0.98</sub>Se reaches to 10.78 μW cm<sup>−1</sup> K<sup>−2</sup> at 823 K. In addition, we used the volatilization of carbonate to introduce dislocations and point defects in SnSe. The multi-scale defects effectively scattered phonons, making the thermal conductivity of 0.39 W m<sup>−1</sup> K<sup>−1</sup> is achieved in Al<sub>0.03</sub>Na<sub>0.01</sub>Sn<sub>0.96</sub>Se. Benefit from the optimization strategies of both electrical and thermal performance, a state-of-the-art peak <em>ZT</em> of ∼1.73 is achieved in Al<sub>0.01</sub>Na<sub>0.01</sub>Sn<sub>0.98</sub>Se. This work reveals the key roles of intermediate bands and dislocations in regulating the thermal excitation temperature and anisotropic thermal conductivity of SnSe, and it provides a new idea for improving the TE performance of SnSe-based materials.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"51 ","pages":"Article 101660"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boosts thermoelectric performance of Al/Na co-doped polycrystalline SnSe via intermediate band and multi-scale defect engineering\",\"authors\":\"Nan Xin ,&nbsp;Yilong Zhang ,&nbsp;Yifei Li ,&nbsp;Guihua Tang ,&nbsp;Yinan Nie ,&nbsp;Yang Hu ,&nbsp;Min Zhang ,&nbsp;Xin Zhao ,&nbsp;Dian Huang ,&nbsp;Hao Shen\",\"doi\":\"10.1016/j.mtphys.2025.101660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermoelectric (TE) materials have great potential in the energy recovery and environmental protection. Single crystal tin selenide (SnSe) demonstrates advantaged TE performance across a broad temperature range, but it is easy to form mechanical cracks and difficult to apply in devices. Poly-crystallization effectively enhances its mechanical properties but severely limits the hole transport reducing TE performance. Here, we provide an efficient strategy to increase hole concentration and introduce intermediate band for enhancing the electrical performance of polycrystalline SnSe in its advantaged temperature range via Al/Na co-doping. Specifically, Na dopant increases the hole concentration from 2.60 × 10<sup>17</sup> cm<sup>−3</sup> to 1.20 × 10<sup>19</sup> cm<sup>−3</sup>, while Al dopant introduces intermediate band to reduce the thermal excitation temperature and promote the hole transition. As a result, the power factor of Al<sub>0.01</sub>Na<sub>0.01</sub>Sn<sub>0.98</sub>Se reaches to 10.78 μW cm<sup>−1</sup> K<sup>−2</sup> at 823 K. In addition, we used the volatilization of carbonate to introduce dislocations and point defects in SnSe. The multi-scale defects effectively scattered phonons, making the thermal conductivity of 0.39 W m<sup>−1</sup> K<sup>−1</sup> is achieved in Al<sub>0.03</sub>Na<sub>0.01</sub>Sn<sub>0.96</sub>Se. Benefit from the optimization strategies of both electrical and thermal performance, a state-of-the-art peak <em>ZT</em> of ∼1.73 is achieved in Al<sub>0.01</sub>Na<sub>0.01</sub>Sn<sub>0.98</sub>Se. This work reveals the key roles of intermediate bands and dislocations in regulating the thermal excitation temperature and anisotropic thermal conductivity of SnSe, and it provides a new idea for improving the TE performance of SnSe-based materials.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"51 \",\"pages\":\"Article 101660\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325000161\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000161","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热电材料在能源回收和环境保护方面具有巨大的潜力。单晶硒化锡(SnSe)在较宽的温度范围内具有良好的TE性能,但容易形成机械裂纹,难以应用于器件中。多晶化有效地提高了其力学性能,但严重限制了空穴输运,降低了TE性能。在此,我们提供了一种有效的策略来增加空穴浓度,并引入中间带,通过Al/Na共掺杂来提高多晶SnSe在其有利温度范围内的电性能。其中,Na掺杂使空穴浓度从2.60×1017 cm-3增加到1.20×1019 cm-3, Al掺杂引入中间带降低热激发温度,促进空穴转变。结果表明,在823 K时,Al0.01Na0.01Sn0.98Se的功率因数达到10.78 μW cm-1 K-2。此外,我们利用碳酸盐的挥发在SnSe中引入位错和点缺陷。多尺度缺陷有效地散射声子,使得在Al0.03Na0.01Sn0.96Se中导热系数达到0.39 W m-1 K-1。得益于电学和热性能的优化策略,在Al0.01Na0.01Sn0.98Se中实现了最先进的ZT峰值~ 1.73。本工作揭示了中间带和位错在调节SnSe的热激发温度和各向异性导热系数中的关键作用,为提高SnSe基材料的TE性能提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Boosts thermoelectric performance of Al/Na co-doped polycrystalline SnSe via intermediate band and multi-scale defect engineering
Thermoelectric (TE) materials have great potential in the energy recovery and environmental protection. Single crystal tin selenide (SnSe) demonstrates advantaged TE performance across a broad temperature range, but it is easy to form mechanical cracks and difficult to apply in devices. Poly-crystallization effectively enhances its mechanical properties but severely limits the hole transport reducing TE performance. Here, we provide an efficient strategy to increase hole concentration and introduce intermediate band for enhancing the electrical performance of polycrystalline SnSe in its advantaged temperature range via Al/Na co-doping. Specifically, Na dopant increases the hole concentration from 2.60 × 1017 cm−3 to 1.20 × 1019 cm−3, while Al dopant introduces intermediate band to reduce the thermal excitation temperature and promote the hole transition. As a result, the power factor of Al0.01Na0.01Sn0.98Se reaches to 10.78 μW cm−1 K−2 at 823 K. In addition, we used the volatilization of carbonate to introduce dislocations and point defects in SnSe. The multi-scale defects effectively scattered phonons, making the thermal conductivity of 0.39 W m−1 K−1 is achieved in Al0.03Na0.01Sn0.96Se. Benefit from the optimization strategies of both electrical and thermal performance, a state-of-the-art peak ZT of ∼1.73 is achieved in Al0.01Na0.01Sn0.98Se. This work reveals the key roles of intermediate bands and dislocations in regulating the thermal excitation temperature and anisotropic thermal conductivity of SnSe, and it provides a new idea for improving the TE performance of SnSe-based materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively Tuning Phonon Transport across Al/nonmetal Interfaces through Controlling Interfacial Bonding Strength without Modifying Thermal Conductivity Vacancy regulation to achieve N-type high thermoelectric performance PbSe through titanium-incorporation Crystalline FeOCl as a novel saturable absorber for broadband ultrafast photonic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1