低迟滞、高回弹性的金属离子介导导电水凝胶

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2025-02-01 DOI:10.1016/j.mtphys.2025.101656
Zhiwei Chen , Xionggang Chen , Haidong Wang , Tingting Yang , Jinxia Huang , Zhiguang Guo
{"title":"低迟滞、高回弹性的金属离子介导导电水凝胶","authors":"Zhiwei Chen ,&nbsp;Xionggang Chen ,&nbsp;Haidong Wang ,&nbsp;Tingting Yang ,&nbsp;Jinxia Huang ,&nbsp;Zhiguang Guo","doi":"10.1016/j.mtphys.2025.101656","DOIUrl":null,"url":null,"abstract":"<div><div>Conductive hydrogels with poor mechanical properties seriously limit the service life of sensors and flexible electronics. Outstanding mechanical properties and electrical conductivity are the bottleneck of the application of conductive hydrogels. To combined excellent elasticity and electronic conductivity, herein, a new method was employed to achieve elastic dissipation with low hysteresis via introduce metal ions crosslinking, thereby enhancing mechanical dissipation of polymer network. Specifically, acrylamide (AAm) is a monomer in the covalent network via free radical polymerization. Sodium alginate (SA) form metal coordination bonds with Fe<sup>3+</sup>, Zn<sup>2+</sup> and Ca<sup>2+</sup>. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT: PSS) is selected to be a conductive polymer. The resultant AAm/SA/PEDOT: PSS (ASP) hydrogels exhibit low hysteresis, high resilience and excellent electronic conductivity. Metal coordination bonds not only provide high elasticity as elastic dissipation energy, but also enhance electrical conductivity. The ASP hydrogels display combined mechanical performances with elastic modulus (550 MPa), fracture strength (0.81 MPa), fracture strain (473 %) and work of rupture (3.13 MJ/m<sup>3</sup>), and outstanding electronic conductivity (0.32 S/cm) which has great potential for extending the service life of hydrogels.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"51 ","pages":"Article 101656"},"PeriodicalIF":10.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal ion mediated conductive hydrogels with low hysteresis and high resilience\",\"authors\":\"Zhiwei Chen ,&nbsp;Xionggang Chen ,&nbsp;Haidong Wang ,&nbsp;Tingting Yang ,&nbsp;Jinxia Huang ,&nbsp;Zhiguang Guo\",\"doi\":\"10.1016/j.mtphys.2025.101656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conductive hydrogels with poor mechanical properties seriously limit the service life of sensors and flexible electronics. Outstanding mechanical properties and electrical conductivity are the bottleneck of the application of conductive hydrogels. To combined excellent elasticity and electronic conductivity, herein, a new method was employed to achieve elastic dissipation with low hysteresis via introduce metal ions crosslinking, thereby enhancing mechanical dissipation of polymer network. Specifically, acrylamide (AAm) is a monomer in the covalent network via free radical polymerization. Sodium alginate (SA) form metal coordination bonds with Fe<sup>3+</sup>, Zn<sup>2+</sup> and Ca<sup>2+</sup>. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT: PSS) is selected to be a conductive polymer. The resultant AAm/SA/PEDOT: PSS (ASP) hydrogels exhibit low hysteresis, high resilience and excellent electronic conductivity. Metal coordination bonds not only provide high elasticity as elastic dissipation energy, but also enhance electrical conductivity. The ASP hydrogels display combined mechanical performances with elastic modulus (550 MPa), fracture strength (0.81 MPa), fracture strain (473 %) and work of rupture (3.13 MJ/m<sup>3</sup>), and outstanding electronic conductivity (0.32 S/cm) which has great potential for extending the service life of hydrogels.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"51 \",\"pages\":\"Article 101656\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325000124\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000124","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

导电性水凝胶力学性能差,严重限制了传感器和柔性电子设备的使用寿命。优异的机械性能和导电性是导电水凝胶应用的瓶颈。为了结合优异的弹性和电子导电性,本文采用了一种新的方法,通过引入金属离子交联来实现低迟滞的弹性耗散,从而增强聚合物网络的机械耗散。具体来说,丙烯酰胺(AAm)是通过自由基聚合形成共价网络的单体。海藻酸钠(SA)与Fe3+、Zn2+和Ca2+形成金属配位键。聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸酯(PEDOT: PSS)是一种导电聚合物。合成的AAm/SA/PEDOT: PSS导电水凝胶(ASP)具有低迟滞、高回弹性和优异的导电性。金属配位键不仅提供高弹性作为弹性耗散能,而且提高了导电性能。ASP水凝胶具有弹性模量(550 MPa)、断裂强度(0.81 MPa)、断裂应变(473%)和断裂功(3.13 MJ/m3)的综合力学性能,具有优异的电导率(0.32 S/cm),具有很大的延长水凝胶使用寿命的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metal ion mediated conductive hydrogels with low hysteresis and high resilience
Conductive hydrogels with poor mechanical properties seriously limit the service life of sensors and flexible electronics. Outstanding mechanical properties and electrical conductivity are the bottleneck of the application of conductive hydrogels. To combined excellent elasticity and electronic conductivity, herein, a new method was employed to achieve elastic dissipation with low hysteresis via introduce metal ions crosslinking, thereby enhancing mechanical dissipation of polymer network. Specifically, acrylamide (AAm) is a monomer in the covalent network via free radical polymerization. Sodium alginate (SA) form metal coordination bonds with Fe3+, Zn2+ and Ca2+. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT: PSS) is selected to be a conductive polymer. The resultant AAm/SA/PEDOT: PSS (ASP) hydrogels exhibit low hysteresis, high resilience and excellent electronic conductivity. Metal coordination bonds not only provide high elasticity as elastic dissipation energy, but also enhance electrical conductivity. The ASP hydrogels display combined mechanical performances with elastic modulus (550 MPa), fracture strength (0.81 MPa), fracture strain (473 %) and work of rupture (3.13 MJ/m3), and outstanding electronic conductivity (0.32 S/cm) which has great potential for extending the service life of hydrogels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
MXene Nb2C/MoS2 heterostructure: Nonlinear optical properties and a new broadband saturable absorber for ultrafast photonics Low-temperature annealing induces superior shock-resistant performance in FeCoCrNiCu high-entropy alloy Effectively Tuning Phonon Transport across Al/nonmetal Interfaces through Controlling Interfacial Bonding Strength without Modifying Thermal Conductivity Vacancy regulation to achieve N-type high thermoelectric performance PbSe through titanium-incorporation Crystalline FeOCl as a novel saturable absorber for broadband ultrafast photonic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1