Xinzong Wang, Xiaofang Kang, Ling Ji, Ao Zhang, Guanghui Xia
{"title":"基于可调装置的仿生多稳定压电振动系统低频振动能量收集","authors":"Xinzong Wang, Xiaofang Kang, Ling Ji, Ao Zhang, Guanghui Xia","doi":"10.1016/j.chaos.2025.116026","DOIUrl":null,"url":null,"abstract":"The bionic structure has unique nonlinear properties that can effectively broaden the energy harvesting band. Currently, this energy harvesting device lacks adjustability and adaptability to different environments. Inspired by the tracheas of the lungs, a lung trachea bio-inspired structure (LTBS) is proposed. The main structure of LTBS consists of springs, rods, gears and piezoelectric elements. The novelty of this model is the ability to adapt to different excitation environments by adjusting the steady-state model through rotating gears. The energy harvesting of the system is investigated using the RMS value of the induced voltage and the energy harvesting advantages and disadvantages characteristics are compared at various steady states. The coexisting basins of attraction are mapped and the best optimization scheme to improve its energy harvesting performance is obtained. An impulse perturbation was subsequently initiated to test the model. The test results show that the tri-stable to hexa-stable states exhibit excellent energy harvesting performance in low frequency and low amplitude excitation environments. The initiation of impulse perturbations significantly alters the energy harvesting efficiency and kinematic properties of the system and is limited by the basins of attraction of the system.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"240 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low frequency vibration energy harvesting of bio-inspired multi-stable piezoelectric vibration system with an adjustable device\",\"authors\":\"Xinzong Wang, Xiaofang Kang, Ling Ji, Ao Zhang, Guanghui Xia\",\"doi\":\"10.1016/j.chaos.2025.116026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bionic structure has unique nonlinear properties that can effectively broaden the energy harvesting band. Currently, this energy harvesting device lacks adjustability and adaptability to different environments. Inspired by the tracheas of the lungs, a lung trachea bio-inspired structure (LTBS) is proposed. The main structure of LTBS consists of springs, rods, gears and piezoelectric elements. The novelty of this model is the ability to adapt to different excitation environments by adjusting the steady-state model through rotating gears. The energy harvesting of the system is investigated using the RMS value of the induced voltage and the energy harvesting advantages and disadvantages characteristics are compared at various steady states. The coexisting basins of attraction are mapped and the best optimization scheme to improve its energy harvesting performance is obtained. An impulse perturbation was subsequently initiated to test the model. The test results show that the tri-stable to hexa-stable states exhibit excellent energy harvesting performance in low frequency and low amplitude excitation environments. The initiation of impulse perturbations significantly alters the energy harvesting efficiency and kinematic properties of the system and is limited by the basins of attraction of the system.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"240 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2025.116026\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.116026","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Low frequency vibration energy harvesting of bio-inspired multi-stable piezoelectric vibration system with an adjustable device
The bionic structure has unique nonlinear properties that can effectively broaden the energy harvesting band. Currently, this energy harvesting device lacks adjustability and adaptability to different environments. Inspired by the tracheas of the lungs, a lung trachea bio-inspired structure (LTBS) is proposed. The main structure of LTBS consists of springs, rods, gears and piezoelectric elements. The novelty of this model is the ability to adapt to different excitation environments by adjusting the steady-state model through rotating gears. The energy harvesting of the system is investigated using the RMS value of the induced voltage and the energy harvesting advantages and disadvantages characteristics are compared at various steady states. The coexisting basins of attraction are mapped and the best optimization scheme to improve its energy harvesting performance is obtained. An impulse perturbation was subsequently initiated to test the model. The test results show that the tri-stable to hexa-stable states exhibit excellent energy harvesting performance in low frequency and low amplitude excitation environments. The initiation of impulse perturbations significantly alters the energy harvesting efficiency and kinematic properties of the system and is limited by the basins of attraction of the system.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.