Muhammad Nadeem, Admilson T. Franco, Imran Siddique, Yamid J. Garcia-Blanco, Luis H. Quitian-Ardila, Rizwan Khan
{"title":"电渗透和Darcy-Forchheimer定律对移动细针上磁流体动力学Williamson混合纳米流体流动的影响","authors":"Muhammad Nadeem, Admilson T. Franco, Imran Siddique, Yamid J. Garcia-Blanco, Luis H. Quitian-Ardila, Rizwan Khan","doi":"10.1016/j.chaos.2025.116021","DOIUrl":null,"url":null,"abstract":"This study examines the complex interactions between several parameters, such as electro-osmosis force, activation energy, and Darcy-Forchheimer Law, in the magnetohydrodynamic (MHD) Williamson <mml:math altimg=\"si57.svg\"><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mi>AA</mml:mi><mml:mn>7072</mml:mn><mml:mo>+</mml:mo><mml:mi>AA</mml:mi><mml:mn>7075</mml:mn><mml:mo>/</mml:mo><mml:mi>SA</mml:mi></mml:mrow></mml:mfenced></mml:math> hybrid nanofluid flow over a moving thin needle as alloy nanoparticles AA7075 and AA7072 are inserted into host fluid, sodium alginate (SA). Further, the significance of viscous dissipation, nonlinear thermal radiation, heat absorption/generation, and thermal and concentration convective boundary conditions have been considered to optimize heat and mass transmission. Our approach involves formulating mathematical equations that are then converted into a group of partial differential equations to simulate these intricate processes. These equations become ordinary differential equations through a similarity renovation, and we solve the resulting boundary value problem numerically, implementing the fourth-order accurate BVP4C method. An analysis has been conducted using graphics and tabular to show how many critical physical flow parameters, including temperature ratio, nanoparticle volume fraction, Weissenberg number, magnetic field, and electro-osmotic parameters, affect the mass transfer rate, drag force, flow rate, heat transfer rate, heat, and mass fluxes. The BVP4C solution exhibits absolute compatibility with the artificial neural network (ANN) solution when the numerical solutions are compared to ANN. Fluid temperature rises in response to electro-osmotic parameters, viscoelastic parameters, magnetic field, and nanoparticle volume percentage, but fluid velocity drops, according to the study's prior observations. Moreover, as the activation energy and volume percentage of nanoparticles change, the fluid concentration increases. Drag force and heat transfer rate diminish with increasing electro-osmotic impact.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"57 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of electroosmotic and Darcy-Forchheimer Law on magnetohydrodynamic Williamson hybrid nanofluid flow over a moving thin needle\",\"authors\":\"Muhammad Nadeem, Admilson T. Franco, Imran Siddique, Yamid J. Garcia-Blanco, Luis H. Quitian-Ardila, Rizwan Khan\",\"doi\":\"10.1016/j.chaos.2025.116021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the complex interactions between several parameters, such as electro-osmosis force, activation energy, and Darcy-Forchheimer Law, in the magnetohydrodynamic (MHD) Williamson <mml:math altimg=\\\"si57.svg\\\"><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mi>AA</mml:mi><mml:mn>7072</mml:mn><mml:mo>+</mml:mo><mml:mi>AA</mml:mi><mml:mn>7075</mml:mn><mml:mo>/</mml:mo><mml:mi>SA</mml:mi></mml:mrow></mml:mfenced></mml:math> hybrid nanofluid flow over a moving thin needle as alloy nanoparticles AA7075 and AA7072 are inserted into host fluid, sodium alginate (SA). Further, the significance of viscous dissipation, nonlinear thermal radiation, heat absorption/generation, and thermal and concentration convective boundary conditions have been considered to optimize heat and mass transmission. Our approach involves formulating mathematical equations that are then converted into a group of partial differential equations to simulate these intricate processes. These equations become ordinary differential equations through a similarity renovation, and we solve the resulting boundary value problem numerically, implementing the fourth-order accurate BVP4C method. An analysis has been conducted using graphics and tabular to show how many critical physical flow parameters, including temperature ratio, nanoparticle volume fraction, Weissenberg number, magnetic field, and electro-osmotic parameters, affect the mass transfer rate, drag force, flow rate, heat transfer rate, heat, and mass fluxes. The BVP4C solution exhibits absolute compatibility with the artificial neural network (ANN) solution when the numerical solutions are compared to ANN. Fluid temperature rises in response to electro-osmotic parameters, viscoelastic parameters, magnetic field, and nanoparticle volume percentage, but fluid velocity drops, according to the study's prior observations. Moreover, as the activation energy and volume percentage of nanoparticles change, the fluid concentration increases. Drag force and heat transfer rate diminish with increasing electro-osmotic impact.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2025.116021\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.116021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Role of electroosmotic and Darcy-Forchheimer Law on magnetohydrodynamic Williamson hybrid nanofluid flow over a moving thin needle
This study examines the complex interactions between several parameters, such as electro-osmosis force, activation energy, and Darcy-Forchheimer Law, in the magnetohydrodynamic (MHD) Williamson AA7072+AA7075/SA hybrid nanofluid flow over a moving thin needle as alloy nanoparticles AA7075 and AA7072 are inserted into host fluid, sodium alginate (SA). Further, the significance of viscous dissipation, nonlinear thermal radiation, heat absorption/generation, and thermal and concentration convective boundary conditions have been considered to optimize heat and mass transmission. Our approach involves formulating mathematical equations that are then converted into a group of partial differential equations to simulate these intricate processes. These equations become ordinary differential equations through a similarity renovation, and we solve the resulting boundary value problem numerically, implementing the fourth-order accurate BVP4C method. An analysis has been conducted using graphics and tabular to show how many critical physical flow parameters, including temperature ratio, nanoparticle volume fraction, Weissenberg number, magnetic field, and electro-osmotic parameters, affect the mass transfer rate, drag force, flow rate, heat transfer rate, heat, and mass fluxes. The BVP4C solution exhibits absolute compatibility with the artificial neural network (ANN) solution when the numerical solutions are compared to ANN. Fluid temperature rises in response to electro-osmotic parameters, viscoelastic parameters, magnetic field, and nanoparticle volume percentage, but fluid velocity drops, according to the study's prior observations. Moreover, as the activation energy and volume percentage of nanoparticles change, the fluid concentration increases. Drag force and heat transfer rate diminish with increasing electro-osmotic impact.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.