电渗透和Darcy-Forchheimer定律对移动细针上磁流体动力学Williamson混合纳米流体流动的影响

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2025-01-20 DOI:10.1016/j.chaos.2025.116021
Muhammad Nadeem, Admilson T. Franco, Imran Siddique, Yamid J. Garcia-Blanco, Luis H. Quitian-Ardila, Rizwan Khan
{"title":"电渗透和Darcy-Forchheimer定律对移动细针上磁流体动力学Williamson混合纳米流体流动的影响","authors":"Muhammad Nadeem, Admilson T. Franco, Imran Siddique, Yamid J. Garcia-Blanco, Luis H. Quitian-Ardila, Rizwan Khan","doi":"10.1016/j.chaos.2025.116021","DOIUrl":null,"url":null,"abstract":"This study examines the complex interactions between several parameters, such as electro-osmosis force, activation energy, and Darcy-Forchheimer Law, in the magnetohydrodynamic (MHD) Williamson <mml:math altimg=\"si57.svg\"><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mi>AA</mml:mi><mml:mn>7072</mml:mn><mml:mo>+</mml:mo><mml:mi>AA</mml:mi><mml:mn>7075</mml:mn><mml:mo>/</mml:mo><mml:mi>SA</mml:mi></mml:mrow></mml:mfenced></mml:math> hybrid nanofluid flow over a moving thin needle as alloy nanoparticles AA7075 and AA7072 are inserted into host fluid, sodium alginate (SA). Further, the significance of viscous dissipation, nonlinear thermal radiation, heat absorption/generation, and thermal and concentration convective boundary conditions have been considered to optimize heat and mass transmission. Our approach involves formulating mathematical equations that are then converted into a group of partial differential equations to simulate these intricate processes. These equations become ordinary differential equations through a similarity renovation, and we solve the resulting boundary value problem numerically, implementing the fourth-order accurate BVP4C method. An analysis has been conducted using graphics and tabular to show how many critical physical flow parameters, including temperature ratio, nanoparticle volume fraction, Weissenberg number, magnetic field, and electro-osmotic parameters, affect the mass transfer rate, drag force, flow rate, heat transfer rate, heat, and mass fluxes. The BVP4C solution exhibits absolute compatibility with the artificial neural network (ANN) solution when the numerical solutions are compared to ANN. Fluid temperature rises in response to electro-osmotic parameters, viscoelastic parameters, magnetic field, and nanoparticle volume percentage, but fluid velocity drops, according to the study's prior observations. Moreover, as the activation energy and volume percentage of nanoparticles change, the fluid concentration increases. Drag force and heat transfer rate diminish with increasing electro-osmotic impact.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"57 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of electroosmotic and Darcy-Forchheimer Law on magnetohydrodynamic Williamson hybrid nanofluid flow over a moving thin needle\",\"authors\":\"Muhammad Nadeem, Admilson T. Franco, Imran Siddique, Yamid J. Garcia-Blanco, Luis H. Quitian-Ardila, Rizwan Khan\",\"doi\":\"10.1016/j.chaos.2025.116021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the complex interactions between several parameters, such as electro-osmosis force, activation energy, and Darcy-Forchheimer Law, in the magnetohydrodynamic (MHD) Williamson <mml:math altimg=\\\"si57.svg\\\"><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mi>AA</mml:mi><mml:mn>7072</mml:mn><mml:mo>+</mml:mo><mml:mi>AA</mml:mi><mml:mn>7075</mml:mn><mml:mo>/</mml:mo><mml:mi>SA</mml:mi></mml:mrow></mml:mfenced></mml:math> hybrid nanofluid flow over a moving thin needle as alloy nanoparticles AA7075 and AA7072 are inserted into host fluid, sodium alginate (SA). Further, the significance of viscous dissipation, nonlinear thermal radiation, heat absorption/generation, and thermal and concentration convective boundary conditions have been considered to optimize heat and mass transmission. Our approach involves formulating mathematical equations that are then converted into a group of partial differential equations to simulate these intricate processes. These equations become ordinary differential equations through a similarity renovation, and we solve the resulting boundary value problem numerically, implementing the fourth-order accurate BVP4C method. An analysis has been conducted using graphics and tabular to show how many critical physical flow parameters, including temperature ratio, nanoparticle volume fraction, Weissenberg number, magnetic field, and electro-osmotic parameters, affect the mass transfer rate, drag force, flow rate, heat transfer rate, heat, and mass fluxes. The BVP4C solution exhibits absolute compatibility with the artificial neural network (ANN) solution when the numerical solutions are compared to ANN. Fluid temperature rises in response to electro-osmotic parameters, viscoelastic parameters, magnetic field, and nanoparticle volume percentage, but fluid velocity drops, according to the study's prior observations. Moreover, as the activation energy and volume percentage of nanoparticles change, the fluid concentration increases. Drag force and heat transfer rate diminish with increasing electro-osmotic impact.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2025.116021\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2025.116021","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了磁流体动力学(MHD) Williamson AA7072+AA7075/SA混合纳米流体在移动细针上流动时,合金纳米颗粒AA7075和AA7072插入宿主流体海藻酸钠(SA)时,几个参数之间的复杂相互作用,如电渗透力、活化能和Darcy-Forchheimer定律。此外,还考虑了粘性耗散、非线性热辐射、热吸收/产生以及热浓对流边界条件对优化传热传质的重要性。我们的方法包括制定数学方程,然后将其转换为一组偏微分方程来模拟这些复杂的过程。这些方程通过相似度修正成为常微分方程,并通过数值求解得到的边值问题,实现了四阶精确BVP4C方法。利用图形和表格分析了许多关键的物理流动参数,包括温度比、纳米颗粒体积分数、Weissenberg数、磁场和电渗透参数对传质速率、阻力、流速、传热速率、热量和质量通量的影响。将数值解与人工神经网络(ANN)解进行比较,BVP4C解与人工神经网络(ANN)解具有绝对的兼容性。根据先前的研究,随着电渗透参数、粘弹性参数、磁场和纳米颗粒体积百分比的变化,流体温度会升高,但流体速度会下降。此外,随着纳米颗粒活化能和体积百分比的变化,流体浓度增大。阻力和传热率随电渗透影响的增大而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Role of electroosmotic and Darcy-Forchheimer Law on magnetohydrodynamic Williamson hybrid nanofluid flow over a moving thin needle
This study examines the complex interactions between several parameters, such as electro-osmosis force, activation energy, and Darcy-Forchheimer Law, in the magnetohydrodynamic (MHD) Williamson AA7072+AA7075/SA hybrid nanofluid flow over a moving thin needle as alloy nanoparticles AA7075 and AA7072 are inserted into host fluid, sodium alginate (SA). Further, the significance of viscous dissipation, nonlinear thermal radiation, heat absorption/generation, and thermal and concentration convective boundary conditions have been considered to optimize heat and mass transmission. Our approach involves formulating mathematical equations that are then converted into a group of partial differential equations to simulate these intricate processes. These equations become ordinary differential equations through a similarity renovation, and we solve the resulting boundary value problem numerically, implementing the fourth-order accurate BVP4C method. An analysis has been conducted using graphics and tabular to show how many critical physical flow parameters, including temperature ratio, nanoparticle volume fraction, Weissenberg number, magnetic field, and electro-osmotic parameters, affect the mass transfer rate, drag force, flow rate, heat transfer rate, heat, and mass fluxes. The BVP4C solution exhibits absolute compatibility with the artificial neural network (ANN) solution when the numerical solutions are compared to ANN. Fluid temperature rises in response to electro-osmotic parameters, viscoelastic parameters, magnetic field, and nanoparticle volume percentage, but fluid velocity drops, according to the study's prior observations. Moreover, as the activation energy and volume percentage of nanoparticles change, the fluid concentration increases. Drag force and heat transfer rate diminish with increasing electro-osmotic impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Vibration reduction research of a thin beam system by employing distributed coupling nonlinear energy sinks Rheostatic effect of a magnetic field on the onset of chaotic and periodic motions in a five-dimensional magnetoconvective Lorenz system Nonreciprocal cavity magnonics system for amplification of photonic spin Hall effect Gradient based optimization of Chaogates A novel Riemann–Hilbert formulation-based reduction method to an integrable reverse-space nonlocal Manakov equation and its applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1