IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY Toxins Pub Date : 2025-01-09 DOI:10.3390/toxins17010030
David L Eaton, David E Williams, Roger A Coulombe
{"title":"Species Differences in the Biotransformation of Aflatoxin B1: Primary Determinants of Relative Carcinogenic Potency in Different Animal Species.","authors":"David L Eaton, David E Williams, Roger A Coulombe","doi":"10.3390/toxins17010030","DOIUrl":null,"url":null,"abstract":"<p><p>It has been known since the early days of the discovery of aflatoxin B1 (AFB1) that there were large species differences in susceptibility to AFB1. It was also evident early on that AFB1 itself was not toxic but required bioactivation to a reactive form. Over the past 60 years there have been thousands of studies to delineate the role of ~10 specific biotransformation pathways of AFB1, both phase I (oxidation, reduction) and phase II (hydrolysis, conjugation, secondary oxidations, and reductions of phase I metabolites). This review provides a historical context and substantive analysis of each of these pathways as contributors to species differences in AFB1 hepatoxicity and carcinogenicity. Since the discovery of AFB1 as the toxic contaminant in groundnut meal that led to Turkey X diseases in 1960, there have been over 15,000 publications related to aflatoxins, of which nearly 8000 have addressed the significance of biotransformation (metabolism, in the older literature) of AFB1. While it is impossible to give justice to all of these studies, this review provides a historical perspective on the major discoveries related to species differences in the biotransformation of AFB1 and sets the stage for discussion of other papers in this Special Issue of the important role that AFB1 metabolites have played as biomarkers of exposure and effect in thousands of human studies on the toxic effects of aflatoxins. Dr. John Groopman has played a leading role in every step of the way-from initial laboratory studies on specific AFB1 metabolites to the application of molecular biomarkers in epidemiological studies associating dietary AFB1 exposure with liver cancer, and the design and conduct of chemoprevention clinical trials to reduce cancer risk from unavoidable aflatoxin exposures by alteration of specific AFB1 biotransformation pathways. This article is written in honor of Dr. Groopman's many contributions in this area.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17010030","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

早在发现黄曲霉毒素 B1(AFB1)之初,人们就知道不同物种对 AFB1 的敏感性存在很大差异。同样明显的是,AFB1 本身并无毒性,但需要生物活化成反应形式。在过去的 60 年中,有数千项研究对 AFB1 的约 10 种特定生物转化途径的作用进行了界定,包括第一阶段(氧化、还原)和第二阶段(水解、共轭、二次氧化和第一阶段代谢物的还原)。本综述介绍了造成 AFB1 肝毒性和致癌性物种差异的每种途径的历史背景和实质性分析。自 1960 年发现花生粕中的有毒污染物 AFB1 导致土耳其 X 病以来,已有超过 15,000 篇与黄曲霉毒素有关的论文发表,其中近 8,000 篇论述了 AFB1 的生物转化(旧文献中为新陈代谢)的重要性。虽然不可能对所有这些研究都进行公正的评价,但这篇综述从历史的角度介绍了与 AFB1 生物转化的物种差异有关的重大发现,并为本特刊中的其他论文讨论 AFB1 代谢物在数以千计的黄曲霉毒素毒性人类研究中作为暴露和影响的生物标志物所发挥的重要作用奠定了基础。从最初的特定 AFB1 代谢物实验室研究,到将分子生物标志物应用于将膳食 AFB1 暴露与肝癌联系起来的流行病学研究,再到设计和开展化学预防临床试验,通过改变特定的 AFB1 生物转化途径来降低不可避免的黄曲霉毒素暴露所导致的癌症风险,约翰-格鲁普曼博士在每一步研究中都发挥了领导作用。本文是为了纪念格鲁普曼博士在这一领域做出的诸多贡献而撰写的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Species Differences in the Biotransformation of Aflatoxin B1: Primary Determinants of Relative Carcinogenic Potency in Different Animal Species.

It has been known since the early days of the discovery of aflatoxin B1 (AFB1) that there were large species differences in susceptibility to AFB1. It was also evident early on that AFB1 itself was not toxic but required bioactivation to a reactive form. Over the past 60 years there have been thousands of studies to delineate the role of ~10 specific biotransformation pathways of AFB1, both phase I (oxidation, reduction) and phase II (hydrolysis, conjugation, secondary oxidations, and reductions of phase I metabolites). This review provides a historical context and substantive analysis of each of these pathways as contributors to species differences in AFB1 hepatoxicity and carcinogenicity. Since the discovery of AFB1 as the toxic contaminant in groundnut meal that led to Turkey X diseases in 1960, there have been over 15,000 publications related to aflatoxins, of which nearly 8000 have addressed the significance of biotransformation (metabolism, in the older literature) of AFB1. While it is impossible to give justice to all of these studies, this review provides a historical perspective on the major discoveries related to species differences in the biotransformation of AFB1 and sets the stage for discussion of other papers in this Special Issue of the important role that AFB1 metabolites have played as biomarkers of exposure and effect in thousands of human studies on the toxic effects of aflatoxins. Dr. John Groopman has played a leading role in every step of the way-from initial laboratory studies on specific AFB1 metabolites to the application of molecular biomarkers in epidemiological studies associating dietary AFB1 exposure with liver cancer, and the design and conduct of chemoprevention clinical trials to reduce cancer risk from unavoidable aflatoxin exposures by alteration of specific AFB1 biotransformation pathways. This article is written in honor of Dr. Groopman's many contributions in this area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxins
Toxins TOXICOLOGY-
CiteScore
7.50
自引率
16.70%
发文量
765
审稿时长
16.24 days
期刊介绍: Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. The First Large Identification of 3ANX and NX Producing Isolates of Fusarium graminearum in Manitoba, Western Canada. Updated Nematocyst Types in Tentacle of Venomous Box Jellyfish, Chironex indrasaksajiae(Sucharitakul, 2017) and Chiropsoides buitendijki(Horst, 1907) (Cnidaria, Cubozoa) in Thai Waters. Crustacean Zooplankton Ingestion of Potentially Toxic Microcystis: In Situ Estimation Using mcyE Gene Gut Content Detection in a Large Temperate Eutrophic Lake. Delphi Consensus on the Management of Spanish Patients with Post-Stroke Hemiplegic Shoulder Pain Treated with Botulinum Toxin A: Result Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1