IF 3.9 3区 医学 Q2 FOOD SCIENCE & TECHNOLOGY Toxins Pub Date : 2025-01-01 DOI:10.3390/toxins17010017
Yu Ichisaka, Chihiro Takei, Kazuma Naito, Manami Higa, Shozo Yano, Toshimitsu Niwa, Hidehisa Shimizu
{"title":"The Role of Indoxyl Sulfate in Exacerbating Colorectal Cancer During Chronic Kidney Disease Progression: Insights into the Akt/β-Catenin/c-Myc and AhR/c-Myc Pathways in HCT-116 Colorectal Cancer Cells.","authors":"Yu Ichisaka, Chihiro Takei, Kazuma Naito, Manami Higa, Shozo Yano, Toshimitsu Niwa, Hidehisa Shimizu","doi":"10.3390/toxins17010017","DOIUrl":null,"url":null,"abstract":"<p><p>Epidemiological studies suggest an increased risk of colorectal cancer (CRC) aggravation in patients with chronic kidney disease (CKD). Our previous study demonstrated that indoxyl sulfate, a uremic toxin whose concentration increases with CKD progression, exacerbates CRC through activation of the AhR and Akt pathways. Consequently, indoxyl sulfate has been proposed to be a significant link between CKD progression and CRC aggravation. The present study aimed to investigate the roles of c-Myc and β-Catenin, which are hypothesized to be downstream factors of indoxyl sulfate-induced AhR and Akt activation, in CRC cell proliferation and EGF sensitivity in HCT-116 CRC cells. Indoxyl sulfate significantly induced CRC cell proliferation at concentrations exceeding 62.5 µM, a process suppressed by the c-Myc inhibitor 10058-F4. Indoxyl sulfate activated the Akt/β-Catenin/c-Myc pathway as evidenced by the Akt inhibitor MK2206, which decreased both β-Catenin and c-Myc protein levels, and the β-Catenin inhibitor XAV-939, which reduced c-Myc protein levels. The AhR antagonist CH223191 also inhibited c-Myc upregulation, indicating involvement of the AhR/c-Myc pathway. MK2206 partially attenuated the indoxyl sulfate-induced AhR transcriptional activity, suggesting that Akt activation influences the AhR/c-Myc pathway. MK2206, CH223191, and 10058-F4 suppressed the increase in EGFR protein levels induced by indoxyl sulfate, indicating that the Akt/β-Catenin/c-Myc and AhR/c-Myc pathways enhance the sensitivity of HCT-116 CRC cells to EGF. These findings indicate that the elevation of indoxyl sulfate levels in the blood, due to CKD progression, could worsen CRC by promoting the proliferation of CRC cells and enhancing EGF signaling. Therefore, indoxyl sulfate could potentially serve as a therapeutic target for CRC aggravation in patients with CKD.</p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"17 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769072/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins17010017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

流行病学研究表明,慢性肾脏病(CKD)患者结直肠癌(CRC)恶化的风险增加。我们之前的研究表明,吲哚硫酸酯是一种尿毒症毒素,其浓度会随着 CKD 的进展而增加,它通过激活 AhR 和 Akt 通路而加重 CRC 的病情。因此,硫酸吲哚酯被认为是 CKD 进展和 CRC 恶化之间的重要联系。本研究旨在探讨 c-Myc 和 β-Catenin 在 HCT-116 CRC 细胞增殖和 EGF 敏感性中的作用,它们被认为是硫酸吲哚酯诱导 AhR 和 Akt 激活的下游因子。浓度超过 62.5 µM 时,硫酸吲哚酯可明显诱导 CRC 细胞增殖,而 c-Myc 抑制剂 10058-F4 可抑制这一过程。Akt抑制剂MK2206可降低β-Catenin和c-Myc蛋白水平,β-Catenin抑制剂XAV-939可降低c-Myc蛋白水平,这证明硫酸吲哚酯激活了Akt/β-Catenin/c-Myc通路。AhR 拮抗剂 CH223191 也抑制了 c-Myc 的上调,表明 AhR/c-Myc 通路参与其中。MK2206 部分减弱了硫酸茚三酮诱导的 AhR 转录活性,表明 Akt 激活影响了 AhR/c-Myc 通路。MK2206、CH223191和10058-F4抑制了硫酸茚三酮诱导的表皮生长因子受体蛋白水平的升高,表明Akt/β-Catenin/c-Myc和AhR/c-Myc通路增强了HCT-116 CRC细胞对表皮生长因子的敏感性。这些研究结果表明,由于慢性肾功能衰竭的进展,血液中硫酸吲哚酯水平升高,可通过促进 CRC 细胞增殖和增强 EGF 信号转导而恶化 CRC。因此,硫酸吲哚酯有可能成为治疗 CKD 患者 CRC 恶化的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Role of Indoxyl Sulfate in Exacerbating Colorectal Cancer During Chronic Kidney Disease Progression: Insights into the Akt/β-Catenin/c-Myc and AhR/c-Myc Pathways in HCT-116 Colorectal Cancer Cells.

Epidemiological studies suggest an increased risk of colorectal cancer (CRC) aggravation in patients with chronic kidney disease (CKD). Our previous study demonstrated that indoxyl sulfate, a uremic toxin whose concentration increases with CKD progression, exacerbates CRC through activation of the AhR and Akt pathways. Consequently, indoxyl sulfate has been proposed to be a significant link between CKD progression and CRC aggravation. The present study aimed to investigate the roles of c-Myc and β-Catenin, which are hypothesized to be downstream factors of indoxyl sulfate-induced AhR and Akt activation, in CRC cell proliferation and EGF sensitivity in HCT-116 CRC cells. Indoxyl sulfate significantly induced CRC cell proliferation at concentrations exceeding 62.5 µM, a process suppressed by the c-Myc inhibitor 10058-F4. Indoxyl sulfate activated the Akt/β-Catenin/c-Myc pathway as evidenced by the Akt inhibitor MK2206, which decreased both β-Catenin and c-Myc protein levels, and the β-Catenin inhibitor XAV-939, which reduced c-Myc protein levels. The AhR antagonist CH223191 also inhibited c-Myc upregulation, indicating involvement of the AhR/c-Myc pathway. MK2206 partially attenuated the indoxyl sulfate-induced AhR transcriptional activity, suggesting that Akt activation influences the AhR/c-Myc pathway. MK2206, CH223191, and 10058-F4 suppressed the increase in EGFR protein levels induced by indoxyl sulfate, indicating that the Akt/β-Catenin/c-Myc and AhR/c-Myc pathways enhance the sensitivity of HCT-116 CRC cells to EGF. These findings indicate that the elevation of indoxyl sulfate levels in the blood, due to CKD progression, could worsen CRC by promoting the proliferation of CRC cells and enhancing EGF signaling. Therefore, indoxyl sulfate could potentially serve as a therapeutic target for CRC aggravation in patients with CKD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxins
Toxins TOXICOLOGY-
CiteScore
7.50
自引率
16.70%
发文量
765
审稿时长
16.24 days
期刊介绍: Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Aflatoxin B1: Challenges and Strategies for the Intestinal Microbiota and Intestinal Health of Monogastric Animals. The First Large Identification of 3ANX and NX Producing Isolates of Fusarium graminearum in Manitoba, Western Canada. Updated Nematocyst Types in Tentacle of Venomous Box Jellyfish, Chironex indrasaksajiae(Sucharitakul, 2017) and Chiropsoides buitendijki(Horst, 1907) (Cnidaria, Cubozoa) in Thai Waters. Crustacean Zooplankton Ingestion of Potentially Toxic Microcystis: In Situ Estimation Using mcyE Gene Gut Content Detection in a Large Temperate Eutrophic Lake. Delphi Consensus on the Management of Spanish Patients with Post-Stroke Hemiplegic Shoulder Pain Treated with Botulinum Toxin A: Result Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1