细胞可塑性与非小细胞肺癌:T 细胞和 NK 细胞免疫逃避和获得免疫疗法抗药性的作用。

IF 7.7 2区 医学 Q1 ONCOLOGY Cancer and Metastasis Reviews Pub Date : 2025-01-25 DOI:10.1007/s10555-025-10244-8
Sarra Mestiri, Ana Sami, Naresh Sah, Dina Moustafa Abo El-Ella, Sabiha Khatoon, Khadija Shafique, Afsheen Raza, Darin Mansor Mathkor, Shafiul Haque
{"title":"细胞可塑性与非小细胞肺癌:T 细胞和 NK 细胞免疫逃避和获得免疫疗法抗药性的作用。","authors":"Sarra Mestiri, Ana Sami, Naresh Sah, Dina Moustafa Abo El-Ella, Sabiha Khatoon, Khadija Shafique, Afsheen Raza, Darin Mansor Mathkor, Shafiul Haque","doi":"10.1007/s10555-025-10244-8","DOIUrl":null,"url":null,"abstract":"<p><p>Lung cancer is a leading global cause of mortality, with non-small cell lung cancer (NSCLC) accounting for a significant portion of cases. Immune checkpoint inhibitors (ICIs) have transformed NSCLC treatment; however, many patients remain unresponsive. ICI resistance in NSCLC and its association with cellular plasticity, epithelial-mesenchymal transition (EMT), enhanced adaptability, invasiveness, and resistance is largely influenced by epigenetic changes, signaling pathways, tumor microenvironment, and associated immune cells, fibroblasts, and cytokines. Immunosuppressive cells, including M2 tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, contribute to resistance by suppressing the immune response. This cellular plasticity is influenced when B cells, natural killer cells, and T cells are exhausted or inhibited by components of the tumor microenvironment. Conversely, diverse T cell, NK cell, and B cell subsets hold potential as predictive response markers particularly cytotoxic CD8<sup>+</sup> T cells, effector memory T cells, activated T cells, tumor infiltrated NK cells, tertiary lymphoid structures, etc. influence treatment response. Identifying specific gene expressions and immunophenotypes within T cells may offer insights into early clinical responses to immunotherapy. ICI resistance in NSCLC is a multifaceted process shaped by tumor plasticity, the complex tumor microenvironment, and dynamic immune cell changes. Comprehensive analysis of these factors may lead to the identification of novel biomarkers and combination therapies to enhance ICI efficacy in NSCLC treatment.</p>","PeriodicalId":9489,"journal":{"name":"Cancer and Metastasis Reviews","volume":"44 1","pages":"27"},"PeriodicalIF":7.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cellular plasticity and non-small cell lung cancer: role of T and NK cell immune evasion and acquisition of resistance to immunotherapies.\",\"authors\":\"Sarra Mestiri, Ana Sami, Naresh Sah, Dina Moustafa Abo El-Ella, Sabiha Khatoon, Khadija Shafique, Afsheen Raza, Darin Mansor Mathkor, Shafiul Haque\",\"doi\":\"10.1007/s10555-025-10244-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lung cancer is a leading global cause of mortality, with non-small cell lung cancer (NSCLC) accounting for a significant portion of cases. Immune checkpoint inhibitors (ICIs) have transformed NSCLC treatment; however, many patients remain unresponsive. ICI resistance in NSCLC and its association with cellular plasticity, epithelial-mesenchymal transition (EMT), enhanced adaptability, invasiveness, and resistance is largely influenced by epigenetic changes, signaling pathways, tumor microenvironment, and associated immune cells, fibroblasts, and cytokines. Immunosuppressive cells, including M2 tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, contribute to resistance by suppressing the immune response. This cellular plasticity is influenced when B cells, natural killer cells, and T cells are exhausted or inhibited by components of the tumor microenvironment. Conversely, diverse T cell, NK cell, and B cell subsets hold potential as predictive response markers particularly cytotoxic CD8<sup>+</sup> T cells, effector memory T cells, activated T cells, tumor infiltrated NK cells, tertiary lymphoid structures, etc. influence treatment response. Identifying specific gene expressions and immunophenotypes within T cells may offer insights into early clinical responses to immunotherapy. ICI resistance in NSCLC is a multifaceted process shaped by tumor plasticity, the complex tumor microenvironment, and dynamic immune cell changes. Comprehensive analysis of these factors may lead to the identification of novel biomarkers and combination therapies to enhance ICI efficacy in NSCLC treatment.</p>\",\"PeriodicalId\":9489,\"journal\":{\"name\":\"Cancer and Metastasis Reviews\",\"volume\":\"44 1\",\"pages\":\"27\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer and Metastasis Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10555-025-10244-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer and Metastasis Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10555-025-10244-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cellular plasticity and non-small cell lung cancer: role of T and NK cell immune evasion and acquisition of resistance to immunotherapies.

Lung cancer is a leading global cause of mortality, with non-small cell lung cancer (NSCLC) accounting for a significant portion of cases. Immune checkpoint inhibitors (ICIs) have transformed NSCLC treatment; however, many patients remain unresponsive. ICI resistance in NSCLC and its association with cellular plasticity, epithelial-mesenchymal transition (EMT), enhanced adaptability, invasiveness, and resistance is largely influenced by epigenetic changes, signaling pathways, tumor microenvironment, and associated immune cells, fibroblasts, and cytokines. Immunosuppressive cells, including M2 tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, contribute to resistance by suppressing the immune response. This cellular plasticity is influenced when B cells, natural killer cells, and T cells are exhausted or inhibited by components of the tumor microenvironment. Conversely, diverse T cell, NK cell, and B cell subsets hold potential as predictive response markers particularly cytotoxic CD8+ T cells, effector memory T cells, activated T cells, tumor infiltrated NK cells, tertiary lymphoid structures, etc. influence treatment response. Identifying specific gene expressions and immunophenotypes within T cells may offer insights into early clinical responses to immunotherapy. ICI resistance in NSCLC is a multifaceted process shaped by tumor plasticity, the complex tumor microenvironment, and dynamic immune cell changes. Comprehensive analysis of these factors may lead to the identification of novel biomarkers and combination therapies to enhance ICI efficacy in NSCLC treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.00
自引率
0.00%
发文量
54
审稿时长
6-12 weeks
期刊介绍: Contemporary biomedical research is on the threshold of an era in which physiological and pathological processes can be analyzed in increasingly precise and mechanistic terms.The transformation of biology from a largely descriptive, phenomenological discipline to one in which the regulatory principles can be understood and manipulated with predictability brings a new dimension to the study of cancer and the search for effective therapeutic modalities for this disease. Cancer and Metastasis Reviews provides a forum for critical review and discussion of these challenging developments. A major function of the journal is to review some of the more important and interesting recent developments in the biology and treatment of malignant disease, as well as to highlight new and promising directions, be they technological or conceptual. Contributors are encouraged to review their personal work and be speculative.
期刊最新文献
Minimally invasive biomarkers for triaging lung nodules-challenges and future perspectives. Efficacy of innovative systemic treatments in combination with radiotherapy for bone metastases: a GEMO (the European Study Group of Bone Metastases) state of the art. Cellular plasticity and non-small cell lung cancer: role of T and NK cell immune evasion and acquisition of resistance to immunotherapies. The diversity of natural killer cell functional and phenotypic states in cancer. Sympathetic nerve signaling rewires the tumor microenvironment: a shift in "microenvironmental-ity".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1