通过原生质体的紫外线突变提高格尔德霉素链霉菌的产量

IF 4.1 2区 生物学 Q2 MICROBIOLOGY Microorganisms Pub Date : 2025-01-17 DOI:10.3390/microorganisms13010186
Yuan Yuan, Lu Yang, Zhikai Fang, Haimin Chen, Fei Sun, Hong Jiang, Jian Zhou
{"title":"通过原生质体的紫外线突变提高格尔德霉素链霉菌的产量","authors":"Yuan Yuan, Lu Yang, Zhikai Fang, Haimin Chen, Fei Sun, Hong Jiang, Jian Zhou","doi":"10.3390/microorganisms13010186","DOIUrl":null,"url":null,"abstract":"<p><p>Geldanamycin, a benzoquinone ansa antibiotic, has been extensively applied in medical, agricultural, and health research areas due to its antitumor, antifungal, herbicidal, and antiradiation effects. In this study, an improvement of geldanamycin production by <i>Streptomyces geldanamycininus</i> FIM18-0592 was first performed by protoplasts combined with UV mutagenesis and ribosome engineering technology, respectively. The results showed that strains induced by UV mutagenesis of protoplasts were superior to protoplasts treated with erythromycin in terms of the positive variability, average relative titer, and maximum relative titer, with values of 51.95%, 99%, and 136%, respectively. A mutant strain that produced 3742 μg/mL geldanamycin was generated by protoplast UV mutagenesis, with a 36% higher yield than the initial strain. Multi-omic analysis revealed that the high-yielding geldanamycin in mutant strain 53 could upregulate <i>GdmG</i> and <i>GdmX</i> by 1.59 and 2.38 times in the ansamycin synthesis pathway, and downregulate <i>pks12</i>, <i>pikAI</i>, and <i>pikAII</i> by 0.25, 0.37, and 0.48 times in the fatty acid synthesis pathway, which was crucial for geldanamycin production. Our study provides a novel <i>S. geldanamycininus</i> geldanamycin production strategy and offers valuable insights for mutagenesis and breeding of other microorganisms.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767647/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving Geldanamycin Production in <i>Streptomyces geldanamycininus</i> Through UV Mutagenesis of Protoplast.\",\"authors\":\"Yuan Yuan, Lu Yang, Zhikai Fang, Haimin Chen, Fei Sun, Hong Jiang, Jian Zhou\",\"doi\":\"10.3390/microorganisms13010186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Geldanamycin, a benzoquinone ansa antibiotic, has been extensively applied in medical, agricultural, and health research areas due to its antitumor, antifungal, herbicidal, and antiradiation effects. In this study, an improvement of geldanamycin production by <i>Streptomyces geldanamycininus</i> FIM18-0592 was first performed by protoplasts combined with UV mutagenesis and ribosome engineering technology, respectively. The results showed that strains induced by UV mutagenesis of protoplasts were superior to protoplasts treated with erythromycin in terms of the positive variability, average relative titer, and maximum relative titer, with values of 51.95%, 99%, and 136%, respectively. A mutant strain that produced 3742 μg/mL geldanamycin was generated by protoplast UV mutagenesis, with a 36% higher yield than the initial strain. Multi-omic analysis revealed that the high-yielding geldanamycin in mutant strain 53 could upregulate <i>GdmG</i> and <i>GdmX</i> by 1.59 and 2.38 times in the ansamycin synthesis pathway, and downregulate <i>pks12</i>, <i>pikAI</i>, and <i>pikAII</i> by 0.25, 0.37, and 0.48 times in the fatty acid synthesis pathway, which was crucial for geldanamycin production. Our study provides a novel <i>S. geldanamycininus</i> geldanamycin production strategy and offers valuable insights for mutagenesis and breeding of other microorganisms.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767647/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms13010186\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13010186","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Geldanamycin Production in Streptomyces geldanamycininus Through UV Mutagenesis of Protoplast.

Geldanamycin, a benzoquinone ansa antibiotic, has been extensively applied in medical, agricultural, and health research areas due to its antitumor, antifungal, herbicidal, and antiradiation effects. In this study, an improvement of geldanamycin production by Streptomyces geldanamycininus FIM18-0592 was first performed by protoplasts combined with UV mutagenesis and ribosome engineering technology, respectively. The results showed that strains induced by UV mutagenesis of protoplasts were superior to protoplasts treated with erythromycin in terms of the positive variability, average relative titer, and maximum relative titer, with values of 51.95%, 99%, and 136%, respectively. A mutant strain that produced 3742 μg/mL geldanamycin was generated by protoplast UV mutagenesis, with a 36% higher yield than the initial strain. Multi-omic analysis revealed that the high-yielding geldanamycin in mutant strain 53 could upregulate GdmG and GdmX by 1.59 and 2.38 times in the ansamycin synthesis pathway, and downregulate pks12, pikAI, and pikAII by 0.25, 0.37, and 0.48 times in the fatty acid synthesis pathway, which was crucial for geldanamycin production. Our study provides a novel S. geldanamycininus geldanamycin production strategy and offers valuable insights for mutagenesis and breeding of other microorganisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microorganisms
Microorganisms Medicine-Microbiology (medical)
CiteScore
7.40
自引率
6.70%
发文量
2168
审稿时长
20.03 days
期刊介绍: Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
NupR Is Involved in the Control of PlcR: A Pleiotropic Regulator of Extracellular Virulence Factors. Anti-Tick-Bourne Encephalitis IgM Intrathecal Synthesis as a Prediction Marker in Tick-Borne Encephalitis Patients. Differences in Biogeographic Patterns and Mechanisms of Assembly in Estuarine Bacterial and Protist Communities. Antibacterial Potential of Crude Extracts from Cylindrospermum alatosporum NR125682 and Loriellopsis cavernicola NR117881. Prevalence and Antibiotic Resistance of Escherichia coli Isolated from Raw Cow's Milk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1