用于高性能双离子电容器的 NH4+ 调制阴极界面空间电荷再分布技术

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2025-01-27 DOI:10.1007/s40820-025-01660-0
Yumin Chen, Ziyang Song, Yaokang Lv, Lihua Gan, Mingxian Liu
{"title":"用于高性能双离子电容器的 NH4+ 调制阴极界面空间电荷再分布技术","authors":"Yumin Chen,&nbsp;Ziyang Song,&nbsp;Yaokang Lv,&nbsp;Lihua Gan,&nbsp;Mingxian Liu","doi":"10.1007/s40820-025-01660-0","DOIUrl":null,"url":null,"abstract":"<div><p>Compared with Zn<sup>2+</sup>, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH<sub>4</sub><sup>+</sup> is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH<sub>4</sub><sup>+</sup>-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn<sup>2+</sup>/NH<sub>4</sub><sup>+</sup> co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>–NH<sub>4</sub>CF<sub>3</sub>SO<sub>3</sub> electrolyte, high-reactive Zn<sup>2+</sup> and small-hydrate-sized NH<sub>4</sub>(H<sub>2</sub>O)<sub>4</sub><sup>+</sup> induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement. Furthermore, cathodic interfacial adsorbed hydrated NH<sub>4</sub><sup>+</sup> ions afford high-kinetics and ultrastable C‧‧‧H (NH<sub>4</sub><sup>+</sup>) charge storage process due to a much lower desolvation energy barrier compared with heavy and rigid Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> (5.81 vs. 14.90 eV). Consequently, physical uptake and multielectron redox of Zn<sup>2+</sup>/NH<sub>4</sub><sup>+</sup> in carbon cathode enable the zinc capacitor to deliver high capacity (240 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup>), large-current tolerance (130 mAh g<sup>−1</sup> at 50 A g<sup>−1</sup>) and ultralong lifespan (400,000 cycles). This study gives new insights into the design of cathode–electrolyte interfaces toward advanced zinc-based energy storage.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01660-0.pdf","citationCount":"0","resultStr":"{\"title\":\"NH4+-Modulated Cathodic Interfacial Spatial Charge Redistribution for High-Performance Dual-Ion Capacitors\",\"authors\":\"Yumin Chen,&nbsp;Ziyang Song,&nbsp;Yaokang Lv,&nbsp;Lihua Gan,&nbsp;Mingxian Liu\",\"doi\":\"10.1007/s40820-025-01660-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compared with Zn<sup>2+</sup>, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH<sub>4</sub><sup>+</sup> is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH<sub>4</sub><sup>+</sup>-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn<sup>2+</sup>/NH<sub>4</sub><sup>+</sup> co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CF<sub>3</sub>SO<sub>3</sub>)<sub>2</sub>–NH<sub>4</sub>CF<sub>3</sub>SO<sub>3</sub> electrolyte, high-reactive Zn<sup>2+</sup> and small-hydrate-sized NH<sub>4</sub>(H<sub>2</sub>O)<sub>4</sub><sup>+</sup> induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement. Furthermore, cathodic interfacial adsorbed hydrated NH<sub>4</sub><sup>+</sup> ions afford high-kinetics and ultrastable C‧‧‧H (NH<sub>4</sub><sup>+</sup>) charge storage process due to a much lower desolvation energy barrier compared with heavy and rigid Zn(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> (5.81 vs. 14.90 eV). Consequently, physical uptake and multielectron redox of Zn<sup>2+</sup>/NH<sub>4</sub><sup>+</sup> in carbon cathode enable the zinc capacitor to deliver high capacity (240 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup>), large-current tolerance (130 mAh g<sup>−1</sup> at 50 A g<sup>−1</sup>) and ultralong lifespan (400,000 cycles). This study gives new insights into the design of cathode–electrolyte interfaces toward advanced zinc-based energy storage.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-025-01660-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-025-01660-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01660-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NH4+-Modulated Cathodic Interfacial Spatial Charge Redistribution for High-Performance Dual-Ion Capacitors

Compared with Zn2+, the current mainly reported charge carrier for zinc hybrid capacitors, small-hydrated-sized and light-weight NH4+ is expected as a better one to mediate cathodic interfacial electrochemical behaviors, yet has not been unraveled. Here we propose an NH4+-modulated cationic solvation strategy to optimize cathodic spatial charge distribution and achieve dynamic Zn2+/NH4+ co-storage for boosting Zinc hybrid capacitors. Owing to the hierarchical cationic solvated structure in hybrid Zn(CF3SO3)2–NH4CF3SO3 electrolyte, high-reactive Zn2+ and small-hydrate-sized NH4(H2O)4+ induce cathodic interfacial Helmholtz plane reconfiguration, thus effectively enhancing the spatial charge density to activate 20% capacity enhancement. Furthermore, cathodic interfacial adsorbed hydrated NH4+ ions afford high-kinetics and ultrastable C‧‧‧H (NH4+) charge storage process due to a much lower desolvation energy barrier compared with heavy and rigid Zn(H2O)62+ (5.81 vs. 14.90 eV). Consequently, physical uptake and multielectron redox of Zn2+/NH4+ in carbon cathode enable the zinc capacitor to deliver high capacity (240 mAh g−1 at 0.5 A g−1), large-current tolerance (130 mAh g−1 at 50 A g−1) and ultralong lifespan (400,000 cycles). This study gives new insights into the design of cathode–electrolyte interfaces toward advanced zinc-based energy storage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
V–Ti-Based Solid Solution Alloys for Solid-State Hydrogen Storage A Review of MAX Series Materials: From Diversity, Synthesis, Prediction, Properties Oriented to Functions Boosting Alcohol Oxidation Electrocatalysis with Multifactorial Engineered Pd1/Pt Single-Atom Alloy-BiOx Adatoms Surface All-in-One: A Multifunctional Composite Biomimetic Cryogel for Coagulation Disorder Hemostasis and Infected Diabetic Wound Healing Correction: Transition Metal Carbonitride MXenes Anchored with Pt Sub-nanometer Clusters to Achieve High-Performance Hydrogen Evolution Reaction at All pH Range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1