IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2025-01-26 DOI:10.1021/acsbiomaterials.4c02220
Md Meraj Ansari, Vivek Yadav, Sayali Dighe, Kaushik Kuche, Kanika, Rehan Khan, Sanyog Jain
{"title":"Co-Delivery of Glycyrrhizin and Paclitaxel via Gelatin-Based Core-Shell Nanoparticles Ameliorates 1,2-Dimethylhydrazine-Induced Precancerous Lesions in Colon.","authors":"Md Meraj Ansari, Vivek Yadav, Sayali Dighe, Kaushik Kuche, Kanika, Rehan Khan, Sanyog Jain","doi":"10.1021/acsbiomaterials.4c02220","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer is a lethal malignancy that begins from acquired/inherent premalignant lesions. Thus, targeting these lesions at an early stage of the disease could impede the oncogenesis and maximize the efficacy. The present work underscores a combinatorial therapy of paclitaxel (PTX) and glycyrrhizin (GL) delivered via gelatin-derived core-shell nanoparticles [AC-PCL(GL + PTX)-GNPs] for effective management of precancerous lesions. The desolvation method was adopted to prepare GL-loaded gelatin nanoparticles (GL-GNPs), which were coated with PTX and AC-PCL. The prepared NPs exhibited optimal physical attributes and had spherical morphology, as analyzed by transmission electron microscopy and field-emission scanning electron microscopy. <i>In vitro</i> release studies revealed sustained release for ∼96 h. Cell culture studies in HTC 116, and HT-29 cells showed synergistic action with CI < 0.9 and DRI > 1. Moreover, AC-PCL(GL + PTX)-GNPs exhibited amplified intracellular uptake and thus significantly reduced IC<sub>50</sub>. Pharmacokinetic studies revealed substantiated pharmacokinetic parameters (AUC<sub>0-∞</sub>, <i>C</i><sub>max</sub>, etc.). <i>In vivo</i> studies in a 1,2-dimethyl hydrazine-induced model revealed a decrease in the number of lesions, mucin depletion, and subside infiltrations. An immunohistochemical study revealed elevated expression of caspase-9 and suppressed expression of VEGF and <i>K</i><sub>i</sub>-67. Toxicity studies showed insignificant changes in systemic biomarkers along with no alterations in organ morphology and hemocompatibility. In essence, AC-PCL(GL + PTX)-GNPs render a competent and safer tactic to regulate early-stage precancerous lesions.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

结直肠癌是一种致命的恶性肿瘤,它始于获得性/固有的恶性前病变。因此,在疾病的早期阶段针对这些病变进行治疗可以阻碍肿瘤的发生,并最大限度地提高疗效。本研究强调通过明胶衍生的核壳纳米颗粒[AC-PCL(GL + PTX)-GNPs]递送紫杉醇(PTX)和甘草酸苷(GL)的组合疗法,以有效治疗癌前病变。该研究采用去溶胶法制备了负载GL的明胶纳米颗粒(GL-GNPs),并在其表面包覆了PTX和AC-PCL。经透射电子显微镜和场发射扫描电子显微镜分析,所制备的纳米颗粒具有最佳的物理属性和球形形态。在 HTC 116 和 HT-29 细胞中进行的细胞培养研究表明,它们具有协同作用,CI < 0.9,DRI > 1。此外,AC-PCL(GL + PTX)-GNPs 表现出更强的细胞内摄取能力,从而显著降低了 IC50。药代动力学研究显示,药代动力学参数(AUC0-∞、Cmax 等)已得到证实。在 1,2-二甲基肼诱导的模型中进行的体内研究显示,病变数量减少、粘蛋白耗竭和浸润减弱。免疫组化研究显示,Caspase-9 的表达升高,VEGF 和 Ki-67 的表达受到抑制。毒性研究表明,全身生物标志物的变化不大,器官形态和血液相容性也没有改变。从本质上讲,AC-PCL(GL + PTX)-GNPs是调节早期癌前病变的一种有效且更安全的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-Delivery of Glycyrrhizin and Paclitaxel via Gelatin-Based Core-Shell Nanoparticles Ameliorates 1,2-Dimethylhydrazine-Induced Precancerous Lesions in Colon.

Colorectal cancer is a lethal malignancy that begins from acquired/inherent premalignant lesions. Thus, targeting these lesions at an early stage of the disease could impede the oncogenesis and maximize the efficacy. The present work underscores a combinatorial therapy of paclitaxel (PTX) and glycyrrhizin (GL) delivered via gelatin-derived core-shell nanoparticles [AC-PCL(GL + PTX)-GNPs] for effective management of precancerous lesions. The desolvation method was adopted to prepare GL-loaded gelatin nanoparticles (GL-GNPs), which were coated with PTX and AC-PCL. The prepared NPs exhibited optimal physical attributes and had spherical morphology, as analyzed by transmission electron microscopy and field-emission scanning electron microscopy. In vitro release studies revealed sustained release for ∼96 h. Cell culture studies in HTC 116, and HT-29 cells showed synergistic action with CI < 0.9 and DRI > 1. Moreover, AC-PCL(GL + PTX)-GNPs exhibited amplified intracellular uptake and thus significantly reduced IC50. Pharmacokinetic studies revealed substantiated pharmacokinetic parameters (AUC0-∞, Cmax, etc.). In vivo studies in a 1,2-dimethyl hydrazine-induced model revealed a decrease in the number of lesions, mucin depletion, and subside infiltrations. An immunohistochemical study revealed elevated expression of caspase-9 and suppressed expression of VEGF and Ki-67. Toxicity studies showed insignificant changes in systemic biomarkers along with no alterations in organ morphology and hemocompatibility. In essence, AC-PCL(GL + PTX)-GNPs render a competent and safer tactic to regulate early-stage precancerous lesions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Issue Publication Information Issue Editorial Masthead Spiked Systems for Colonic Drug Delivery: Architectural Opportunities and Quality Assurance of Selective Laser Sintering. Electrospun Biomimetic Periosteum Promotes Diabetic Bone Defect Regeneration through Regulating Macrophage Polarization and Sequential Drug Release. Freeze-Dried Porous Collagen Scaffolds for the Repair of Volumetric Muscle Loss Injuries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1