Jun Tang, Leilei Si, Yigang Wang, Guomin Xia, Hongming Wang
{"title":"From X- To J-Aggregation: Subtly Managing Intermolecular Interactions for Superior Phototheranostics with Precise 1064 nm Excitation.","authors":"Jun Tang, Leilei Si, Yigang Wang, Guomin Xia, Hongming Wang","doi":"10.1002/adhm.202404322","DOIUrl":null,"url":null,"abstract":"<p><p>The stacking mode in aggregate state results from a delicate balance of supramolecular interactions, which closely affects the optoelectronic properties of organic π-conjugated systems. Then, managing these interactions is crucial for advancing phototheranostics, yet remains challenging. A subtle strategy involving peripheral phenyl groups is debuted herein to transform X-aggregated SQ-H into J-aggregated SQ-Ph, reorienting intermolecular dipole interactions while rationally modulating π-π interactions. Co-assembled with liposomes (DSPE-PEG2000), SQ-Ph nanoparticles (NPs) exhibit low toxicity, superior biocompatibility, and a bathochromic shift to the 1064 nm match-excited NIR-II region, with a fluorescence brightness (ε<sub>1064</sub> <sub>nm</sub> Φ<sub>NIR-II</sub>) of 4129 M<sup>-1</sup> cm<sup>-1</sup> and a photothermal conversion efficiency (PCE) of 48.3%. Preliminary in vivo experiments demonstrate that SQ-Ph NPs achieve a signal-to-background ratio (SBR) of up to 14.29 in NIR-II fluorescence imaging (FLI), enabling highly efficient photothermal therapy (PTT) of tumors guided by combined photoacoustic imaging (PAI). This study not only enriches the J-aggregation library but also provides a paradigm for optimizing photosensitizers at the supramolecular level.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404322"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404322","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
From X- To J-Aggregation: Subtly Managing Intermolecular Interactions for Superior Phototheranostics with Precise 1064 nm Excitation.
The stacking mode in aggregate state results from a delicate balance of supramolecular interactions, which closely affects the optoelectronic properties of organic π-conjugated systems. Then, managing these interactions is crucial for advancing phototheranostics, yet remains challenging. A subtle strategy involving peripheral phenyl groups is debuted herein to transform X-aggregated SQ-H into J-aggregated SQ-Ph, reorienting intermolecular dipole interactions while rationally modulating π-π interactions. Co-assembled with liposomes (DSPE-PEG2000), SQ-Ph nanoparticles (NPs) exhibit low toxicity, superior biocompatibility, and a bathochromic shift to the 1064 nm match-excited NIR-II region, with a fluorescence brightness (ε1064nm ΦNIR-II) of 4129 M-1 cm-1 and a photothermal conversion efficiency (PCE) of 48.3%. Preliminary in vivo experiments demonstrate that SQ-Ph NPs achieve a signal-to-background ratio (SBR) of up to 14.29 in NIR-II fluorescence imaging (FLI), enabling highly efficient photothermal therapy (PTT) of tumors guided by combined photoacoustic imaging (PAI). This study not only enriches the J-aggregation library but also provides a paradigm for optimizing photosensitizers at the supramolecular level.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.