IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2025-01-25 DOI:10.1002/cphc.202400955
Qianyu He, Mengke Li, Shi-Jian Su
{"title":"Spectral Narrowing Strategies in Multiple Resonance Thermally Activated Delayed Fluorescence Materials.","authors":"Qianyu He, Mengke Li, Shi-Jian Su","doi":"10.1002/cphc.202400955","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials possess unique advantages of high-efficiency and narrowband emission, which have rapidly occupied an important position in the field of organic light-emitting diodes (OLEDs). In recent years, significant advancements have been made in the development of MR-TADF materials, particularly in achieving spectral narrowing for high-color-purity OLED applications. Based on diverse MR-TADF molecular skeletons, this review summarizes the primary molecular strategies to narrow spectrum by suppressing structural relaxation and intermolecular interactions. Key strategies include π-conjugation extension, increased molecular rigidity, and the introduction of bulky substituents and intramolecular hydrogen bonds. Additionally, effects of these strategies on photophysical properties are discussed. These molecular design strategies are expected to offer valuable insights for the future design of high-efficiency, narrowband OLED emitters.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400955"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400955","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

多共振热激活延迟荧光(MR-TADF)材料具有高效率和窄带发射的独特优势,在有机发光二极管(OLED)领域迅速占据了重要地位。近年来,MR-TADF 材料的开发取得了重大进展,尤其是在实现光谱窄化以应用于高色纯有机发光二极管方面。本综述以各种 MR-TADF 分子骨架为基础,总结了通过抑制结构弛豫和分子间相互作用来缩小光谱的主要分子策略。主要策略包括π-共轭延伸、增加分子刚性、引入大体积取代基和分子内氢键。此外,还讨论了这些策略对光物理性质的影响。这些分子设计策略有望为未来设计高效、窄带 OLED 发光体提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral Narrowing Strategies in Multiple Resonance Thermally Activated Delayed Fluorescence Materials.

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials possess unique advantages of high-efficiency and narrowband emission, which have rapidly occupied an important position in the field of organic light-emitting diodes (OLEDs). In recent years, significant advancements have been made in the development of MR-TADF materials, particularly in achieving spectral narrowing for high-color-purity OLED applications. Based on diverse MR-TADF molecular skeletons, this review summarizes the primary molecular strategies to narrow spectrum by suppressing structural relaxation and intermolecular interactions. Key strategies include π-conjugation extension, increased molecular rigidity, and the introduction of bulky substituents and intramolecular hydrogen bonds. Additionally, effects of these strategies on photophysical properties are discussed. These molecular design strategies are expected to offer valuable insights for the future design of high-efficiency, narrowband OLED emitters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
Studies of Catalytic Activity of New Nickel(II) Compounds Containing Pyridine Carboxylic Acids Ligands in Oligomerization Processes of Selected Olefins and Cyclohexyl Isocyanide. Molecular Insights into Alkali Metal Interaction with Redox Active Covalent Organic Framework as Cathode in Batteries. Charge-transfer adducts vs iodine(I) complexes: dual role of halogen bonding in reactions of diiodine with N-donor bases. Cover Feature: Novel Class of Ambipolar Columnar Liquid Crystals Based on Cyclic Dipeptide and Isatin Hybrids (ChemPhysChem 5/2025) Front Cover: Influence of Photoemission Geometry on Timing and Efficiency in 4D Ultrafast Electron Microscopy (ChemPhysChem 5/2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1