IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2025-01-27 DOI:10.1002/marc.202401058
Ming Yang, Ni Yao, Roman A Surmenev, Xinxin Zhang, Jianyong Yu, Shichao Zhang, Bin Ding
{"title":"Hybrid Nanofibrous Membrane with Durable Electret for Anti-Wetting Air Filtration.","authors":"Ming Yang, Ni Yao, Roman A Surmenev, Xinxin Zhang, Jianyong Yu, Shichao Zhang, Bin Ding","doi":"10.1002/marc.202401058","DOIUrl":null,"url":null,"abstract":"<p><p>Electrospun fibrous materials with fine fibers and small pores are fundamental for particulate matter (PM) filtration, addressing its harmful environmental and health impacts. However, the existing electrospun fibers are still limited to their sub-micron diameters and unstable surface electrostatic effect, leading to deteriorated filtration performance after prolonged storage or wetting. Herein, the study creates nanofibrous membranes with long-time stable electrostatics by electret-enhanced electrospinning. The phase separation and polarization of the charged jet are manipulated to achieve rapid stretch and strong electret. The obtained membrane exhibits nanosized structures with fiber diameters of ≈220 nm, pore size <1 µm, as well as robust surface potential of 0.4 kV. By virtue of the synergistic effects of sieving and adsorption, the nanofibrous membrane showed a remarkable PM<sub>0.3</sub> filtration efficiency of 96.6% and pressure drop of 140 Pa, even reaching the N90 standard after five wetting cycles. The design of such durable membranes will offer a new sight in the functional filtration materials.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401058"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401058","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

具有细纤维和小孔隙的电纺纤维材料是过滤颗粒物(PM)的基础,可解决其对环境和健康的有害影响。然而,现有的电纺纤维仍受限于其亚微米级的直径和不稳定的表面静电效应,导致其在长期储存或润湿后过滤性能下降。本研究通过驻极体增强电纺丝技术制造出具有长期稳定静电效应的纳米纤维膜。通过操纵带电射流的相分离和极化,可实现快速拉伸和强驻极体。获得的膜具有纳米级结构,纤维直径≈220 nm,孔径为 0.3,过滤效率为 96.6%,压降为 140 Pa,经过五次润湿循环后甚至达到了 N90 标准。这种耐用膜的设计将为功能性过滤材料带来新的景象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Nanofibrous Membrane with Durable Electret for Anti-Wetting Air Filtration.

Electrospun fibrous materials with fine fibers and small pores are fundamental for particulate matter (PM) filtration, addressing its harmful environmental and health impacts. However, the existing electrospun fibers are still limited to their sub-micron diameters and unstable surface electrostatic effect, leading to deteriorated filtration performance after prolonged storage or wetting. Herein, the study creates nanofibrous membranes with long-time stable electrostatics by electret-enhanced electrospinning. The phase separation and polarization of the charged jet are manipulated to achieve rapid stretch and strong electret. The obtained membrane exhibits nanosized structures with fiber diameters of ≈220 nm, pore size <1 µm, as well as robust surface potential of 0.4 kV. By virtue of the synergistic effects of sieving and adsorption, the nanofibrous membrane showed a remarkable PM0.3 filtration efficiency of 96.6% and pressure drop of 140 Pa, even reaching the N90 standard after five wetting cycles. The design of such durable membranes will offer a new sight in the functional filtration materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
A Facile Strategy to Construct Stretchable and Thermoreversible Double Network Hydrogels with Low Hysteresis and High Toughness Based on Entanglement and Hydrogen Bond Networks. Interfacially Assembled Fluorescent Nanofilm for Ultra-Sensitive Formic Acid Detection via Hydrogen Bonding Affinity and Recognition. Hemiacetal Ester Side Chains as a Mild Protecting Group for Carboxylic Acids in Polycarbonate Backbones. Indacenodithiophene-Based Medium-Bandgap Guest Acceptor Enables High-Efficiency Ternary Organic Solar Cells. Ionogel Adhesives: From Structural Design to Emerging Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1