Chong Ding , Xueting Pan , Rui Fu , Haoyu Qiu , Haijun Zhu
{"title":"rTMS改善老年小鼠认知功能及其对神经元兴奋性的实时和累积效应。","authors":"Chong Ding , Xueting Pan , Rui Fu , Haoyu Qiu , Haijun Zhu","doi":"10.1016/j.brainres.2025.149474","DOIUrl":null,"url":null,"abstract":"<div><div>Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors. It was observed that 20 Hz high-frequency rTMS attenuated granule cell loss in aged mice, demonstrating both cumulative and real-time effects on neural excitability. Importantly, this intervention significantly ameliorated age-related cognitive decline. The findings suggest that one of the potential mechanisms underlying the amelioration of age-related cognitive decline through high-frequency rTMS may involve the attenuation of granule cell apoptosis and the enhancement of their neural excitability.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1851 ","pages":"Article 149474"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"rTMS improves cognitive function and its real-time and cumulative effect on neuronal excitability in aged mice\",\"authors\":\"Chong Ding , Xueting Pan , Rui Fu , Haoyu Qiu , Haijun Zhu\",\"doi\":\"10.1016/j.brainres.2025.149474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors. It was observed that 20 Hz high-frequency rTMS attenuated granule cell loss in aged mice, demonstrating both cumulative and real-time effects on neural excitability. Importantly, this intervention significantly ameliorated age-related cognitive decline. The findings suggest that one of the potential mechanisms underlying the amelioration of age-related cognitive decline through high-frequency rTMS may involve the attenuation of granule cell apoptosis and the enhancement of their neural excitability.</div></div>\",\"PeriodicalId\":9083,\"journal\":{\"name\":\"Brain Research\",\"volume\":\"1851 \",\"pages\":\"Article 149474\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006899325000320\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899325000320","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
rTMS improves cognitive function and its real-time and cumulative effect on neuronal excitability in aged mice
Repetitive transcranial magnetic stimulation (rTMS) is acknowledged for its critical role in modulating neuronal excitability and enhancing cognitive function. The dentate gyrus of the hippocampus is closely linked to cognitive processes; however, the precise mechanisms by which changes in its excitability influence cognition are not yet fully understood. This study aimed to elucidate the effects on granule cell excitability and the effects on cognition of high-frequency rTMS in naturally aging mice, as well as to investigate the potential interactions between these two factors. It was observed that 20 Hz high-frequency rTMS attenuated granule cell loss in aged mice, demonstrating both cumulative and real-time effects on neural excitability. Importantly, this intervention significantly ameliorated age-related cognitive decline. The findings suggest that one of the potential mechanisms underlying the amelioration of age-related cognitive decline through high-frequency rTMS may involve the attenuation of granule cell apoptosis and the enhancement of their neural excitability.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.