BRN3A 是一种转录因子,它能调节参与形成人乳头瘤病毒诱发宫颈癌的生物过程的基因的表达。

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Genes & genomics Pub Date : 2025-01-28 DOI:10.1007/s13258-025-01620-3
Anand Prakash, Yashvant Patel, Jagat Kumar Roy
{"title":"BRN3A 是一种转录因子,它能调节参与形成人乳头瘤病毒诱发宫颈癌的生物过程的基因的表达。","authors":"Anand Prakash, Yashvant Patel, Jagat Kumar Roy","doi":"10.1007/s13258-025-01620-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cervical cancer is the fourth most common cancer worldwide in females. This occurs primarily due to the infection of high-risk Human Papilloma Virus (HPV), although in advanced stages it requires support from host cellular factors. BRN3A is one such host cellular factors, whose expression remains high in cervical cancers and upregulates tumorigenic HPV gene expression. The effect of BRN3A on HPV-mediated cervical cancer and the underlying mechanism remains obscure.</p><p><strong>Objective: </strong>To investigates the effect of BRN3A on cancer-promoting biological processes in HPV-positive uterine cervix cancer cells.</p><p><strong>Methods: </strong>We have altered the expression of BRN3A through over-expression (OE) and knock-down (KD) constructs in cervical cancer cell line, SiHa, and did transcriptome profiling through next-generation RNA-sequencing, validation through RT-PCR and BRN3A binding study with in silico promoter study and ChIP PCR methods.</p><p><strong>Results: </strong>This study revealed a substantial change in the expression of several genes associated with cancer-promoting biological processes including viral processes, immune response, cell-death, cell-proliferation, different signaling pathways, etc. Additionally, promoter analysis through in silico mode revealed that a total of 32.7% of genes possess BRN3A binding sites at their promoters. Physical interaction of BRN3A with IFITM1, OAS3, ISG15, BCL2L1 and HSP90AB1 genes was also confirmed.</p><p><strong>Conclusions: </strong>The present study identified molecular targets of BRN3A and provided new insight into the pathogenesis of cervical cancer. According to our knowledge, this is the first report on the effect on eukaryotic transcriptomes after over-expression and knocking down BRN3A.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BRN3A, a transcription factor, regulates the expression of genes involved in biological processes shaping the HPV induced cervical cancer.\",\"authors\":\"Anand Prakash, Yashvant Patel, Jagat Kumar Roy\",\"doi\":\"10.1007/s13258-025-01620-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cervical cancer is the fourth most common cancer worldwide in females. This occurs primarily due to the infection of high-risk Human Papilloma Virus (HPV), although in advanced stages it requires support from host cellular factors. BRN3A is one such host cellular factors, whose expression remains high in cervical cancers and upregulates tumorigenic HPV gene expression. The effect of BRN3A on HPV-mediated cervical cancer and the underlying mechanism remains obscure.</p><p><strong>Objective: </strong>To investigates the effect of BRN3A on cancer-promoting biological processes in HPV-positive uterine cervix cancer cells.</p><p><strong>Methods: </strong>We have altered the expression of BRN3A through over-expression (OE) and knock-down (KD) constructs in cervical cancer cell line, SiHa, and did transcriptome profiling through next-generation RNA-sequencing, validation through RT-PCR and BRN3A binding study with in silico promoter study and ChIP PCR methods.</p><p><strong>Results: </strong>This study revealed a substantial change in the expression of several genes associated with cancer-promoting biological processes including viral processes, immune response, cell-death, cell-proliferation, different signaling pathways, etc. Additionally, promoter analysis through in silico mode revealed that a total of 32.7% of genes possess BRN3A binding sites at their promoters. Physical interaction of BRN3A with IFITM1, OAS3, ISG15, BCL2L1 and HSP90AB1 genes was also confirmed.</p><p><strong>Conclusions: </strong>The present study identified molecular targets of BRN3A and provided new insight into the pathogenesis of cervical cancer. According to our knowledge, this is the first report on the effect on eukaryotic transcriptomes after over-expression and knocking down BRN3A.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-025-01620-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-025-01620-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BRN3A, a transcription factor, regulates the expression of genes involved in biological processes shaping the HPV induced cervical cancer.

Background: Cervical cancer is the fourth most common cancer worldwide in females. This occurs primarily due to the infection of high-risk Human Papilloma Virus (HPV), although in advanced stages it requires support from host cellular factors. BRN3A is one such host cellular factors, whose expression remains high in cervical cancers and upregulates tumorigenic HPV gene expression. The effect of BRN3A on HPV-mediated cervical cancer and the underlying mechanism remains obscure.

Objective: To investigates the effect of BRN3A on cancer-promoting biological processes in HPV-positive uterine cervix cancer cells.

Methods: We have altered the expression of BRN3A through over-expression (OE) and knock-down (KD) constructs in cervical cancer cell line, SiHa, and did transcriptome profiling through next-generation RNA-sequencing, validation through RT-PCR and BRN3A binding study with in silico promoter study and ChIP PCR methods.

Results: This study revealed a substantial change in the expression of several genes associated with cancer-promoting biological processes including viral processes, immune response, cell-death, cell-proliferation, different signaling pathways, etc. Additionally, promoter analysis through in silico mode revealed that a total of 32.7% of genes possess BRN3A binding sites at their promoters. Physical interaction of BRN3A with IFITM1, OAS3, ISG15, BCL2L1 and HSP90AB1 genes was also confirmed.

Conclusions: The present study identified molecular targets of BRN3A and provided new insight into the pathogenesis of cervical cancer. According to our knowledge, this is the first report on the effect on eukaryotic transcriptomes after over-expression and knocking down BRN3A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes & genomics
Genes & genomics 生物-生化与分子生物学
CiteScore
3.70
自引率
4.80%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.
期刊最新文献
miR-214-3p inhibits LPS-induced macrophage inflammation and attenuates the progression of dry eye syndrome by regulating ferroptosis in cells. Population genetics analysis based on mitochondrial cytochrome c oxidase subunit I (CO1) gene sequences of Cottus koreanus in South Korea. Potential role of ARG1 c.57G > A variant in Argininemia. A combination of upstream alleles involved in rice heading hastens natural long-day responses. Identification and expression analysis of the SPL gene family during flower bud differentiation in Rhododendron molle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1