白花蛇舌草注射液通过 CAV1/JUN/VEGFA 调节膀胱癌的铁变态反应

IF 4.8 2区 医学 Q2 IMMUNOLOGY International immunopharmacology Pub Date : 2025-02-06 Epub Date: 2025-01-07 DOI:10.1016/j.intimp.2024.113925
Kaiping Bai, Yanxi Long, Fei Yuan, Xiaoling Huang, Pengtao Liu, Yanping Hou, Xiangyu Zou, Tao Jiang, Jie Sun
{"title":"白花蛇舌草注射液通过 CAV1/JUN/VEGFA 调节膀胱癌的铁变态反应","authors":"Kaiping Bai, Yanxi Long, Fei Yuan, Xiaoling Huang, Pengtao Liu, Yanping Hou, Xiangyu Zou, Tao Jiang, Jie Sun","doi":"10.1016/j.intimp.2024.113925","DOIUrl":null,"url":null,"abstract":"<p><p>Hedyotis diffusa Willd. (HDW), a traditional Chinese medicinal plant, exhibits a variety of pharmacological effects and has anticancer potential for a wide range of cancer types; Ferroptosis is a non-apoptosis-regulated cell death induced by iron accumulation and subsequent lipid peroxidation; and there is currently an increasing interest in the therapeutic role of ferroptosis in cancer. However, the effects of HDW on bladder cancer and its underlying molecular mechanisms remain largely unknown. In this study, a combination of in vivo and in vitro experiments, network pharmacology and data mining methods were used to investigate the effects of HDW on BLCA. The results showed that HDW exerted its anticancer activity by inducing ferroptosis in bladder cancer cells. Subsequently, we demonstrated for the first time that HDW induced ferroptosis in vitro and in vivo. To further explore the possible targets of HDW-induced ferroptosis in bladder cancer, we performed network pharmacological analyses, transcriptomic analyses, and single-cell analyses; through integrative analyses, we identified three key pivotal genes associated with iron death, CAV1, VEGFA, and JUN.Mechanistically, we showed that CAV1, VEGFA and JUN are key determinants of HDW-induced ferroptosis in BLCA. Knockdown of target genes altered the anticancer effects of HDW in 5637 and T24 cells. In conclusion, our data show for the first time that HDW exerts its anticancer effects on BLCA through CAV1, VEGFA and JUN gene-induced ferroptosis. This is expected to provide a promising compound for bladder cancer therapy.</p>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"147 ","pages":"113925"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hedyotis diffusa injection modulates the ferroptosis in bladder cancer via CAV1/JUN/VEGFA.\",\"authors\":\"Kaiping Bai, Yanxi Long, Fei Yuan, Xiaoling Huang, Pengtao Liu, Yanping Hou, Xiangyu Zou, Tao Jiang, Jie Sun\",\"doi\":\"10.1016/j.intimp.2024.113925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hedyotis diffusa Willd. (HDW), a traditional Chinese medicinal plant, exhibits a variety of pharmacological effects and has anticancer potential for a wide range of cancer types; Ferroptosis is a non-apoptosis-regulated cell death induced by iron accumulation and subsequent lipid peroxidation; and there is currently an increasing interest in the therapeutic role of ferroptosis in cancer. However, the effects of HDW on bladder cancer and its underlying molecular mechanisms remain largely unknown. In this study, a combination of in vivo and in vitro experiments, network pharmacology and data mining methods were used to investigate the effects of HDW on BLCA. The results showed that HDW exerted its anticancer activity by inducing ferroptosis in bladder cancer cells. Subsequently, we demonstrated for the first time that HDW induced ferroptosis in vitro and in vivo. To further explore the possible targets of HDW-induced ferroptosis in bladder cancer, we performed network pharmacological analyses, transcriptomic analyses, and single-cell analyses; through integrative analyses, we identified three key pivotal genes associated with iron death, CAV1, VEGFA, and JUN.Mechanistically, we showed that CAV1, VEGFA and JUN are key determinants of HDW-induced ferroptosis in BLCA. Knockdown of target genes altered the anticancer effects of HDW in 5637 and T24 cells. In conclusion, our data show for the first time that HDW exerts its anticancer effects on BLCA through CAV1, VEGFA and JUN gene-induced ferroptosis. This is expected to provide a promising compound for bladder cancer therapy.</p>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"147 \",\"pages\":\"113925\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.intimp.2024.113925\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.intimp.2024.113925","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hedyotis diffusa injection modulates the ferroptosis in bladder cancer via CAV1/JUN/VEGFA.

Hedyotis diffusa Willd. (HDW), a traditional Chinese medicinal plant, exhibits a variety of pharmacological effects and has anticancer potential for a wide range of cancer types; Ferroptosis is a non-apoptosis-regulated cell death induced by iron accumulation and subsequent lipid peroxidation; and there is currently an increasing interest in the therapeutic role of ferroptosis in cancer. However, the effects of HDW on bladder cancer and its underlying molecular mechanisms remain largely unknown. In this study, a combination of in vivo and in vitro experiments, network pharmacology and data mining methods were used to investigate the effects of HDW on BLCA. The results showed that HDW exerted its anticancer activity by inducing ferroptosis in bladder cancer cells. Subsequently, we demonstrated for the first time that HDW induced ferroptosis in vitro and in vivo. To further explore the possible targets of HDW-induced ferroptosis in bladder cancer, we performed network pharmacological analyses, transcriptomic analyses, and single-cell analyses; through integrative analyses, we identified three key pivotal genes associated with iron death, CAV1, VEGFA, and JUN.Mechanistically, we showed that CAV1, VEGFA and JUN are key determinants of HDW-induced ferroptosis in BLCA. Knockdown of target genes altered the anticancer effects of HDW in 5637 and T24 cells. In conclusion, our data show for the first time that HDW exerts its anticancer effects on BLCA through CAV1, VEGFA and JUN gene-induced ferroptosis. This is expected to provide a promising compound for bladder cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
期刊最新文献
About the ozone ability in using adaptive chaos to restore a healthy state in the oxygen-ozone adjunct therapy Diabetes exacerbates periodontitis by disrupting IL-33-mediated interaction between periodontal ligament fibroblasts and macrophages Effects of metabolism upon immunity: Targeting myeloid-derived suppressor cells for the treatment of breast cancer is a promising area of study HSPA5-mediated glioma hypoxia tolerance promotes M2 macrophage polarization under hypoxic microenvironment. Morusin regulates the migration of M2 macrophages and GBM cells through the CCL4-CCR5 axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1