Precision Chemistry Pub Date : 2024-12-04 eCollection Date: 2025-01-27 DOI:10.1021/prechem.4c00070
Jui-Han Fu, De-Chian Chen, Yen-Ju Wu, Vincent Tung
{"title":"Constructing Two-Dimensional, Ordered Networks of Carbon-Carbon Bonds with Precision.","authors":"Jui-Han Fu, De-Chian Chen, Yen-Ju Wu, Vincent Tung","doi":"10.1021/prechem.4c00070","DOIUrl":null,"url":null,"abstract":"<p><p>Organic semiconducting nanomembranes (OSNMs), particularly carbon-based ones, are at the forefront of next-generation two-dimensional (2D) semiconductor research. These materials offer remarkable promise due to their diverse chemical properties and unique functionalities, paving the way for innovative applications across advanced semiconductor material sectors. Graphene stands out for its extraordinary mechanical strength, thermal conductivity, and superior charge transport capabilities, inspiring extensive research into other 2D carbon allotropes like graphyne and graphdiyne. With its high electron mobility and tunable bandgap, graphdiyne is particularly attractive for power-efficient electronic devices. However, synthesizing graphdiyne presents significant challenges, primarily due to the difficulty in achieving precise and deterministic control over the coupling of its monomers. This precision is crucial for determining the material's porosity, periodicity, and overall functionality. Innovative approaches have been developed to address these challenges, such as the strategic assembly of molecular building blocks at heterogeneous interfaces. Furthermore, data-driven techniques, such as machine learning and artificial intelligence (AI), are proving invaluable in this field, assisting in screening precursors, optimizing structural configurations, and predicting novel properties of these materials. These advancements are essential for producing durable monolayer sheets that can be integrated into existing electronic components. Despite these advancements, the integration of graphdiyne into semiconductor technology remains complex. Achieving long-range coherence in bonding configurations and enhancing charge transport characteristics are significant hurdles. Continued research into robust and controllable synthesis techniques is essential for unlocking the full potential of graphdiyne and other 2D materials, leading to more efficient, faster, and mechanically robust electronics.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 1","pages":"3-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/prechem.4c00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有机半导体纳米膜(OSNM),尤其是碳基纳米膜,是下一代二维(2D)半导体研究的前沿。这些材料因其多样的化学特性和独特的功能性而前景广阔,为先进半导体材料领域的创新应用铺平了道路。石墨烯以其非凡的机械强度、热导率和卓越的电荷传输能力脱颖而出,激发了人们对石墨烯和石墨二炔等其他二维碳同素异形体的广泛研究。由于具有高电子迁移率和可调带隙,石墨二炔对高能效电子设备尤其具有吸引力。然而,合成石墨二炔面临着巨大的挑战,这主要是由于很难实现对其单体耦合的精确和确定性控制。这种精确性对于确定材料的孔隙率、周期性和整体功能至关重要。为应对这些挑战,我们开发了一些创新方法,例如在异质界面上对分子构件进行战略性组装。此外,数据驱动技术,如机器学习和人工智能(AI),在这一领域被证明是无价之宝,有助于筛选前体、优化结构配置和预测这些材料的新特性。这些进步对于生产可集成到现有电子元件中的耐用单层薄片至关重要。尽管取得了这些进展,但将石墨二炔集成到半导体技术中仍然十分复杂。实现键合配置的长程一致性和增强电荷传输特性是一大障碍。要充分挖掘石墨二炔和其他二维材料的潜力,从而开发出更高效、更快速、机械性能更强的电子产品,就必须继续研究稳健、可控的合成技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constructing Two-Dimensional, Ordered Networks of Carbon-Carbon Bonds with Precision.

Organic semiconducting nanomembranes (OSNMs), particularly carbon-based ones, are at the forefront of next-generation two-dimensional (2D) semiconductor research. These materials offer remarkable promise due to their diverse chemical properties and unique functionalities, paving the way for innovative applications across advanced semiconductor material sectors. Graphene stands out for its extraordinary mechanical strength, thermal conductivity, and superior charge transport capabilities, inspiring extensive research into other 2D carbon allotropes like graphyne and graphdiyne. With its high electron mobility and tunable bandgap, graphdiyne is particularly attractive for power-efficient electronic devices. However, synthesizing graphdiyne presents significant challenges, primarily due to the difficulty in achieving precise and deterministic control over the coupling of its monomers. This precision is crucial for determining the material's porosity, periodicity, and overall functionality. Innovative approaches have been developed to address these challenges, such as the strategic assembly of molecular building blocks at heterogeneous interfaces. Furthermore, data-driven techniques, such as machine learning and artificial intelligence (AI), are proving invaluable in this field, assisting in screening precursors, optimizing structural configurations, and predicting novel properties of these materials. These advancements are essential for producing durable monolayer sheets that can be integrated into existing electronic components. Despite these advancements, the integration of graphdiyne into semiconductor technology remains complex. Achieving long-range coherence in bonding configurations and enhancing charge transport characteristics are significant hurdles. Continued research into robust and controllable synthesis techniques is essential for unlocking the full potential of graphdiyne and other 2D materials, leading to more efficient, faster, and mechanically robust electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Issue Editorial Masthead Issue Publication Information Precision in Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1