Amedeo De Nicolò, Alice Palermiti, Henry Mugerwa, Shamim Nakabuye, Josephine Namusanje, Josephine Kobusingye, Denis Odoch, Mohammed Lamorde, Allan Kengo, Paolo Denti, Kamunkhwala Gausi, Gary Maartens, Helen McIlleron, Lubbe Wiesner, Saye Khoo, Catriona Waitt, Antonio D'Avolio
{"title":"Intracellular Penetration of Atazanavir, Ritonavir and Dolutegravir With Concomitant Rifampicin: A Dose Escalation Study.","authors":"Amedeo De Nicolò, Alice Palermiti, Henry Mugerwa, Shamim Nakabuye, Josephine Namusanje, Josephine Kobusingye, Denis Odoch, Mohammed Lamorde, Allan Kengo, Paolo Denti, Kamunkhwala Gausi, Gary Maartens, Helen McIlleron, Lubbe Wiesner, Saye Khoo, Catriona Waitt, Antonio D'Avolio","doi":"10.1002/cpt.3572","DOIUrl":null,"url":null,"abstract":"<p><p>Ritonavir-boosted atazanavir is a victim of drug-drug interaction with rifampicin, a key component of antitubercular treatment. In a recent dose escalation clinical trial, we showed that increasing atazanavir/ritonavir to 300/100 mg b.i.d. compensates for reduced drug exposure in plasma due to rifampicin, but the intracellular effects remained unexplored. This sub-study investigated the intracellular penetration of atazanavir/ritonavir and dolutegravir into peripheral blood mononuclear cells (PBMC). Twenty-six healthy volunteers living with HIV, virologically suppressed, and taking atazanavir/ritonavir containing regimens were enrolled. The trial consisted of four sequential periods: PK1, participants were on atazanavir/ritonavir 300/100 mg q.d.; at PK2, rifampicin 600 mg q.d. and dolutegravir 50 mg b.i.d. were added (2 weeks); at PK3, atazanavir/ritonavir dose was increased to 300/100 mg b.i.d. (1 week); at PK4, rifampicin dose was doubled (1 week). Atazanavir, ritonavir, and dolutegravir were quantified in plasma and PBMC using LC-MS/MS methods to evaluate steady-state concentrations at the end of each period. Atazanavir/ritonavir dose escalation successfully restored intracellular concentrations comparable to those observed without rifampicin, with a geometric mean ratio of 0.99 (CI<sub>90</sub> 0.72-1.41) for atazanavir at PK3 compared with PK1. The intracellular concentration of dolutegravir increased significantly with atazanavir/ritonavir dose escalation, similar to plasma. Finally, further, increasing the rifampicin dose did not show an additional impact on atazanavir/ritonavir concentrations in PBMC. The study confirms that increasing the ATV/r dose can be an effective strategy for compensating rifampicin effects even at the intracellular level, supporting its use in clinical settings.</p>","PeriodicalId":153,"journal":{"name":"Clinical Pharmacology & Therapeutics","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cpt.3572","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Intracellular Penetration of Atazanavir, Ritonavir and Dolutegravir With Concomitant Rifampicin: A Dose Escalation Study.
Ritonavir-boosted atazanavir is a victim of drug-drug interaction with rifampicin, a key component of antitubercular treatment. In a recent dose escalation clinical trial, we showed that increasing atazanavir/ritonavir to 300/100 mg b.i.d. compensates for reduced drug exposure in plasma due to rifampicin, but the intracellular effects remained unexplored. This sub-study investigated the intracellular penetration of atazanavir/ritonavir and dolutegravir into peripheral blood mononuclear cells (PBMC). Twenty-six healthy volunteers living with HIV, virologically suppressed, and taking atazanavir/ritonavir containing regimens were enrolled. The trial consisted of four sequential periods: PK1, participants were on atazanavir/ritonavir 300/100 mg q.d.; at PK2, rifampicin 600 mg q.d. and dolutegravir 50 mg b.i.d. were added (2 weeks); at PK3, atazanavir/ritonavir dose was increased to 300/100 mg b.i.d. (1 week); at PK4, rifampicin dose was doubled (1 week). Atazanavir, ritonavir, and dolutegravir were quantified in plasma and PBMC using LC-MS/MS methods to evaluate steady-state concentrations at the end of each period. Atazanavir/ritonavir dose escalation successfully restored intracellular concentrations comparable to those observed without rifampicin, with a geometric mean ratio of 0.99 (CI90 0.72-1.41) for atazanavir at PK3 compared with PK1. The intracellular concentration of dolutegravir increased significantly with atazanavir/ritonavir dose escalation, similar to plasma. Finally, further, increasing the rifampicin dose did not show an additional impact on atazanavir/ritonavir concentrations in PBMC. The study confirms that increasing the ATV/r dose can be an effective strategy for compensating rifampicin effects even at the intracellular level, supporting its use in clinical settings.
期刊介绍:
Clinical Pharmacology & Therapeutics (CPT) is the authoritative cross-disciplinary journal in experimental and clinical medicine devoted to publishing advances in the nature, action, efficacy, and evaluation of therapeutics. CPT welcomes original Articles in the emerging areas of translational, predictive and personalized medicine; new therapeutic modalities including gene and cell therapies; pharmacogenomics, proteomics and metabolomics; bioinformation and applied systems biology complementing areas of pharmacokinetics and pharmacodynamics, human investigation and clinical trials, pharmacovigilence, pharmacoepidemiology, pharmacometrics, and population pharmacology.