真空驱动预结晶使高效的全钙钛矿串联太阳能电池成为可能

IF 35.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2025-04-16 DOI:10.1016/j.joule.2025.101825
Mingyu Li , Jun Yan , Afei Zhang , Xinzhao Zhao , Xuke Yang , Shuwen Yan , Ning Ma , Tianjun Ma , Dingfu Luo , Zhenhua Chen , Luying Li , Xiong Li , Chao Chen , Haisheng Song , Jiang Tang
{"title":"真空驱动预结晶使高效的全钙钛矿串联太阳能电池成为可能","authors":"Mingyu Li ,&nbsp;Jun Yan ,&nbsp;Afei Zhang ,&nbsp;Xinzhao Zhao ,&nbsp;Xuke Yang ,&nbsp;Shuwen Yan ,&nbsp;Ning Ma ,&nbsp;Tianjun Ma ,&nbsp;Dingfu Luo ,&nbsp;Zhenhua Chen ,&nbsp;Luying Li ,&nbsp;Xiong Li ,&nbsp;Chao Chen ,&nbsp;Haisheng Song ,&nbsp;Jiang Tang","doi":"10.1016/j.joule.2025.101825","DOIUrl":null,"url":null,"abstract":"<div><div>The power conversion efficiency of all-perovskite tandem solar cells (TSCs) suffers from inferior film quality and the susceptible fabrication processes of lead-tin narrow band-gap (Pb-Sn NBG) perovskite subcells. Herein, we developed a robust vacuum-driven precrystallization (VDP) strategy for high-quality Pb-Sn NBG perovskite films. Compared with traditional anti-solvent methods, the present precrystallization step could significantly retard the perovskite crystallization process by mild vacuum pumping. The above evolution process was quantitatively studied for the perovskite intermediate phase (PIP). The slow solvent extraction of the VDP strategy promotes a low surface energy of (100) plane-oriented precrystallization and provides sufficient time for grain ripening. The obtained Pb-Sn perovskite presented overall texture homogeneity and high crystallinity. The resulting all-perovskite TSCs yielded a top certified efficiency of 28.87% (28.09%) under reverse (forward) scan. Our VDP strategy promises efficient perovskite TSCs and contributes a key step toward robust and scalable photovoltaic technology.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 4","pages":"Article 101825"},"PeriodicalIF":35.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vacuum-driven precrystallization enables efficient all-perovskite tandem solar cells\",\"authors\":\"Mingyu Li ,&nbsp;Jun Yan ,&nbsp;Afei Zhang ,&nbsp;Xinzhao Zhao ,&nbsp;Xuke Yang ,&nbsp;Shuwen Yan ,&nbsp;Ning Ma ,&nbsp;Tianjun Ma ,&nbsp;Dingfu Luo ,&nbsp;Zhenhua Chen ,&nbsp;Luying Li ,&nbsp;Xiong Li ,&nbsp;Chao Chen ,&nbsp;Haisheng Song ,&nbsp;Jiang Tang\",\"doi\":\"10.1016/j.joule.2025.101825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The power conversion efficiency of all-perovskite tandem solar cells (TSCs) suffers from inferior film quality and the susceptible fabrication processes of lead-tin narrow band-gap (Pb-Sn NBG) perovskite subcells. Herein, we developed a robust vacuum-driven precrystallization (VDP) strategy for high-quality Pb-Sn NBG perovskite films. Compared with traditional anti-solvent methods, the present precrystallization step could significantly retard the perovskite crystallization process by mild vacuum pumping. The above evolution process was quantitatively studied for the perovskite intermediate phase (PIP). The slow solvent extraction of the VDP strategy promotes a low surface energy of (100) plane-oriented precrystallization and provides sufficient time for grain ripening. The obtained Pb-Sn perovskite presented overall texture homogeneity and high crystallinity. The resulting all-perovskite TSCs yielded a top certified efficiency of 28.87% (28.09%) under reverse (forward) scan. Our VDP strategy promises efficient perovskite TSCs and contributes a key step toward robust and scalable photovoltaic technology.</div></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"9 4\",\"pages\":\"Article 101825\"},\"PeriodicalIF\":35.4000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435125000066\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435125000066","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

全钙钛矿串联太阳能电池(TSCs)的功率转换效率受到薄膜质量差和铅锡窄带隙(Pb-Sn NBG)钙钛矿亚电池制作工艺的影响。在此,我们开发了一种强大的真空驱动预结晶(VDP)策略,用于高质量的Pb-Sn NBG钙钛矿薄膜。与传统的抗溶剂方法相比,该预结晶步骤可以明显延缓钙钛矿的结晶过程。对钙钛矿中间相(PIP)的上述演化过程进行了定量研究。VDP策略的缓慢溶剂萃取促进了(100)平面预结晶的低表面能,为晶粒成熟提供了充足的时间。所得铅锡钙钛矿整体结构均匀,结晶度高。所得的全钙钛矿tsc在反向(正)扫描下的最高认证效率为28.87%(28.09%)。我们的VDP战略承诺高效的钙钛矿tsc,并为强大和可扩展的光伏技术迈出了关键一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vacuum-driven precrystallization enables efficient all-perovskite tandem solar cells
The power conversion efficiency of all-perovskite tandem solar cells (TSCs) suffers from inferior film quality and the susceptible fabrication processes of lead-tin narrow band-gap (Pb-Sn NBG) perovskite subcells. Herein, we developed a robust vacuum-driven precrystallization (VDP) strategy for high-quality Pb-Sn NBG perovskite films. Compared with traditional anti-solvent methods, the present precrystallization step could significantly retard the perovskite crystallization process by mild vacuum pumping. The above evolution process was quantitatively studied for the perovskite intermediate phase (PIP). The slow solvent extraction of the VDP strategy promotes a low surface energy of (100) plane-oriented precrystallization and provides sufficient time for grain ripening. The obtained Pb-Sn perovskite presented overall texture homogeneity and high crystallinity. The resulting all-perovskite TSCs yielded a top certified efficiency of 28.87% (28.09%) under reverse (forward) scan. Our VDP strategy promises efficient perovskite TSCs and contributes a key step toward robust and scalable photovoltaic technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Roadmap to 100 GWDC: Scientific and supply chain challenges for CdTe photovoltaics Boosting ionic conductivity of fluoride electrolytes by polyanion coordination chemistry enabling 5 V-Class all-solid-state batteries Energy innovation in the US buildings sector: Setting the stage and mapping the future Material insights and challenges for organic photovoltaics based on non-fullerene acceptors Mechano-electrochemical impedance spectroscopy: Experimentation, interpretation, and application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1