提高快充锂离子电池无序岩盐阳极的能量密度

IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2025-01-24 DOI:10.1021/acsmaterialslett.4c02086
Haichen Lin, Wei-Tao Peng, Zishen Wang, Jan Hofmann, Simon M. Vornholt, Haodong Liu, Shen Wang, John Holoubek, Ke Zhou, Qiushi Miao, Steven Huber, Karena W. Chapman*, Shyue Ping Ong* and Ping Liu*, 
{"title":"提高快充锂离子电池无序岩盐阳极的能量密度","authors":"Haichen Lin,&nbsp;Wei-Tao Peng,&nbsp;Zishen Wang,&nbsp;Jan Hofmann,&nbsp;Simon M. Vornholt,&nbsp;Haodong Liu,&nbsp;Shen Wang,&nbsp;John Holoubek,&nbsp;Ke Zhou,&nbsp;Qiushi Miao,&nbsp;Steven Huber,&nbsp;Karena W. Chapman*,&nbsp;Shyue Ping Ong* and Ping Liu*,&nbsp;","doi":"10.1021/acsmaterialslett.4c02086","DOIUrl":null,"url":null,"abstract":"<p >Transition-metal oxides (TMOs) are promising anode materials for safe and fast-charging batteries, but their high operating potentials limit energy density. Here, we develop a strategy to suppress the operating potential of the disordered rock salt (DRS) Li<sub>3</sub>V<sub>2</sub>O<sub>5</sub> (LVO) anode by ∼10% to 0.54 V via Mg doping. Density functional theory (DFT) calculations attribute this voltage reduction to increased site energy of Li ions because of Mg doping, with minimal impact on Li migration barriers. Mg-doped LVO retains over 95% of its capacity over 1000 cycles at a rate of 5 C. Full cells with a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode demonstrate the expected increase in cell voltage and energy density while retaining 91% of their capacity over 250 cycles at 5 C. Our findings show that Mg doping provides a promising pathway for designing fast-charging, long-cycle-life anode materials with enhanced energy density.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 2","pages":"699–706 699–706"},"PeriodicalIF":8.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increasing the Energy Density of Disordered Rock Salt Anodes for Fast-Charging Lithium-Ion Batteries\",\"authors\":\"Haichen Lin,&nbsp;Wei-Tao Peng,&nbsp;Zishen Wang,&nbsp;Jan Hofmann,&nbsp;Simon M. Vornholt,&nbsp;Haodong Liu,&nbsp;Shen Wang,&nbsp;John Holoubek,&nbsp;Ke Zhou,&nbsp;Qiushi Miao,&nbsp;Steven Huber,&nbsp;Karena W. Chapman*,&nbsp;Shyue Ping Ong* and Ping Liu*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c02086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transition-metal oxides (TMOs) are promising anode materials for safe and fast-charging batteries, but their high operating potentials limit energy density. Here, we develop a strategy to suppress the operating potential of the disordered rock salt (DRS) Li<sub>3</sub>V<sub>2</sub>O<sub>5</sub> (LVO) anode by ∼10% to 0.54 V via Mg doping. Density functional theory (DFT) calculations attribute this voltage reduction to increased site energy of Li ions because of Mg doping, with minimal impact on Li migration barriers. Mg-doped LVO retains over 95% of its capacity over 1000 cycles at a rate of 5 C. Full cells with a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cathode demonstrate the expected increase in cell voltage and energy density while retaining 91% of their capacity over 250 cycles at 5 C. Our findings show that Mg doping provides a promising pathway for designing fast-charging, long-cycle-life anode materials with enhanced energy density.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 2\",\"pages\":\"699–706 699–706\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02086\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02086","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属氧化物(TMOs)是一种很有前途的安全快速充电电池负极材料,但其高工作电位限制了能量密度。在这里,我们开发了一种策略,通过Mg掺杂将无序岩盐(DRS) Li3V2O5 (LVO)阳极的工作电位抑制~ 10%至0.54 V。密度泛函理论(DFT)的计算将这种电压降低归因于Mg掺杂增加了Li离子的位能,对Li迁移势垒的影响最小。在5℃的循环速率下,Mg掺杂的LVO在1000次循环中保持了95%以上的容量。使用LiNi0.8Co0.1Mn0.1O2阴极的电池在5℃循环250次后,电池电压和能量密度都有了预期的提高,同时保持了91%的容量。我们的研究结果表明,Mg掺杂为设计具有增强能量密度的快速充电、长循环寿命的负极材料提供了一条有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increasing the Energy Density of Disordered Rock Salt Anodes for Fast-Charging Lithium-Ion Batteries

Transition-metal oxides (TMOs) are promising anode materials for safe and fast-charging batteries, but their high operating potentials limit energy density. Here, we develop a strategy to suppress the operating potential of the disordered rock salt (DRS) Li3V2O5 (LVO) anode by ∼10% to 0.54 V via Mg doping. Density functional theory (DFT) calculations attribute this voltage reduction to increased site energy of Li ions because of Mg doping, with minimal impact on Li migration barriers. Mg-doped LVO retains over 95% of its capacity over 1000 cycles at a rate of 5 C. Full cells with a LiNi0.8Co0.1Mn0.1O2 cathode demonstrate the expected increase in cell voltage and energy density while retaining 91% of their capacity over 250 cycles at 5 C. Our findings show that Mg doping provides a promising pathway for designing fast-charging, long-cycle-life anode materials with enhanced energy density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Issue Publication Information Issue Editorial Masthead ACS Materials Letters: Highlights of 2025 and What’s Next Cation-Dependent Poly(benzimidazobenzophenanthroline):Crown Ether Polymer Blends in n-Type Organic Electrochemical Transistors Accessing the Pores and Unlocking Open Metal Sites in a Rare-Earth Cluster-Based Metal–Organic Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1